
Tom Igoe

Make: PROJECTS

Making
Things Talk

Practical
Methods for
Connecting

Physical Objects

PROJECTS
AND IDEAS
TO CREATE

TALKING
OBJECTS FROM

ANYTHING

Hardware/General

y(7IA5J6*PLKPLK(+,!?!;!;!}
US $29.99 CAN $35.99
ISBN–10: 0-596-51051-9
ISBN–13: 978-0-596-51051-0

Microcontrollers, personal computers,
and web servers talking to each other.

This book is perfect for people with little technical

training but a lot of interest. Maybe you’re a science

teacher who wants to show students how to

monitor weather conditions at several locations at

once, or a sculptor who wants to stage a room of

choreographed mechanical sculptures.

Whether you need to plug some sensors in your home

to the Internet or create a device that can interact

wirelessly with other creations, Making Things Talk

explains exactly what you need.

 You will:

» Make your pet’s bed send you email.

» Make your own game controllers that
communicate over a network.

» Use ZigBee, Bluetooth, Infrared, and plain
old radio to transmit sensor data wirelessly.

» Work with three easy-to-program, open
source environments: Arduino/Wiring,
Processing, and PHP.

» Write programs to send data across the
Internet based on physical activity in your
home, offi ce, or backyard.

Tom Igoe teaches courses in physical computing and networking at the
Interactive Telecommunications Program in the Tisch School of the Arts at
New York University. In his teaching and research, he explores ways to allow
digital technologies to sense and respond to a wider range of human physical
expression. He co-authored Physical Computing: Sensing and Controlling the
Physical World with Computers with Dan O’Sullivan, which has been adopted
by numerous digital art and design schools around the world. He is a contributor
to MAKE magazine and a collaborator on the Arduino open source micro-
controller project. He hopes someday to work with monkeys, as well.

Through twenty-six simple projects, Making Things
Talk shows how to get your creations to talk with
one another by forming networks of smart devices
that carry on conversations with you and your
environment. Here are just a few of the projects:

Blink
Your very fi rst program.

Monski pong
Control a video game
with a fl uffy pink
monkey.

Networked Air Quality
Meter
Download and display
the latest report for your
city.

XBee Toxic Sensor
Use ZigBee, sensors,
and a cymbal monkey to
warn of toxic vapors.

Bluetooth GPS
Build a battery-powered
GPS that reports its
location over Bluetooth.

RFID Reader Bowl
Turn your lights off
when you leave the
home or offi ce.

Building electronic projects that interact with the physical world is good fun.
But when devices that you’ve built start to talk to each other, things really start
to get interesting. Making Things Talk demonstrates that once you fi gure out
how objects communicate — whether they’re microcontroller-powered devices,
email programs, or networked databases — you can get them to interact.

www.oreilly.com

Making Things Talk
Make: PROJECTS M

ake: PR
O

JEC
TS

Tom
 Igoe

M
aking Things Talk

www.it-ebooks.info

http://www.it-ebooks.info/

Making
Things Talk
First Edition

Tom Igoe

BEIJING • CAMBRIDGE • FARNHAM • KÖLN • PARIS • SEBASTOPOL • TAIPEI • TOKYO

MTT_Copyright.indd IMTT_Copyright.indd I 8/30/07 4:35:25 PM8/30/07 4:35:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Making Things Talk

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The MAKE: Projects series

designations, Making Things Talk, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of

the trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors

assume no responsibility for errors or omissions, or for damages resulting from the use of the

information contained herein.

Please note: Technology, and the laws and limitations imposed by manufacturers and content owners,

are constantly changing. Thus, some of the projects described may not work, may be inconsistent

with current laws or user agreements, or may damage or adversely affect some equipment.

Your safety is your own responsibility, including proper use of equipment and safety gear, and

determining whether you have adequate skill and experience. Power tools, electricity, and other

resources used for these projects are dangerous unless used properly and with adequate precautions,

including safety gear. Some illustrative photos do not depict safety precautions or equipment, in

order to show the project steps more clearly. These projects are not intended for use by children.

Use of the instructions and suggestions in Making Things Talk is at your own risk. O’Reilly Media, Inc.,

disclaims all responsibility for any resulting damage, injury, or expense. It is your responsibility to

make sure that your activities comply with applicable laws, including copyright.

ISBN-10: 0-596-51051-9

ISBN-13: 978-0-596-51051-0

by Tom Igoe

Copyright © 2007 O’Reilly Media, Inc. All rights reserved. Printed in U.S.A.

Published by Make:Books, an imprint of Maker Media, a division of O’Reilly Media, Inc.

1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.

For more information, contact our corporate/institutional sales department:

800-998-9938 or corporate@oreilly.com.

Print History

September 2007

First Edition

Publisher: Dale Dougherty

Associate Publisher and Executive Editor: Dan Woods

Editor: Brian Jepson

Copy Editor: Nancy Kotary

Creative Director: Daniel Carter

Designer: Katie Wilson

Production Manager: Terry Bronson

Indexer: Patti Schiendelman

Cover Photograph: Tom Igoe

MTT_Copyright.indd IIMTT_Copyright.indd II 11/6/07 3:18:36 PM11/6/07 3:18:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

MTT_Copyright.indd IIIMTT_Copyright.indd III 8/30/07 4:38:27 PM8/30/07 4:38:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

MTT_TOC.indd IVMTT_TOC.indd IV 9/4/07 1:32:06 PM9/4/07 1:32:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Preface .VIII
Who This Book Is For . X
What You Need To Know .XI
Contents of This Book .XI
On Buying Parts . XII
Using Code Examples . XIII
Using Circuit Examples . XIII
Acknowledgments . XIV
We’d Like to Hear from You . XV

Chapter 1: The Tools .16
It Starts with the Stuff You Touch . 18
It’s About Pulses . 18
Computers of All Shapes and Sizes . 19
Good Habits . 20
Tools . 21
Using the Command Line . 28
It Ends with the Stuff You Touch . 47

Chapter 2: The Simplest Network . 48
Layers of Agreement . 50
Making the Connection: The Lower Layers . 52
Saying Something: The Application Layers . 56

Project 1: Monski Pong . 56
Flow Control . 68

Project 2: Wireless Monski Pong . 71
Project 3: Negotiating in Bluetooth . 75

Conclusion . 78

Chapter 3: A More Complex Network . 80
Network Maps and Addresses . 82
Clients, Servers, and Message Protocols . 87

Project 4: A Networked Cat . 94
Conclusion .112

Contents

MTT_TOC.indd VMTT_TOC.indd V 11/6/07 3:25:44 PM11/6/07 3:25:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Look Ma! No Computer .114
Introducing Network Modules . 116

Project 5: Hello Internet! . 118
An Embedded Network Client Application . 126

Project 6: Networked Air Quality Meter . 126
Serial-to-Ethernet Modules: Programming and Troubleshooting Tools . 139
Conclusion . 145

Chapter 5: Communicating in (Near) Real Time . 146
Interactive Systems and Feedback Loops . 148
Transmission Control Protocol: Sockets & Sessions . 149

Project 7: A Networked Game . 150
Conclusion . 174

Chapter 6: Wireless Communication . 176
Why Isn’t Everything Wireless? . 178
Two Flavors of Wireless: Infrared and Radio . 179

Project 8: Infrared Transmitter-Receiver Pair . 181
Project 9: Radio Transmitter-Receiver Pair . 186
Project 10: Duplex Radio Transmission . 193

An XBee Serial Terminal . 198
Project 11: Bluetooth Transceivers . 207

What About Wi-Fi? . 217
Buying Radios . 217
Conclusion . 218

Chapter 7: The Tools . 220
Look, Ma: No Microcontroller! . 222
Who’s Out There? Broadcast Messages . 223

Project 12: Reporting Toxic Chemicals in the Shop . 228
Directed Messages . 246

Project 13: Relaying Solar Cell Data Wirelessly .250
Conclusion . 259

Chapter 8: How to Locate (Almost) Anything . 260
Network Location and Physical Location . 262
Determining Distance . 265

Project 14: Infrared Distance Ranger Example . 266
Project 15: Ultrasonic Distance Ranger Example . 268
Project 16: Reading Received Signal Strength Using XBee Radios . 273
Project 17: Reading Received Signal Strength Using Bluetooth Radios . 276

Determining Position Through Trilateration . 277
Project 18: Reading the GPS Serial Protocol . 278

Determining Orientation . 284
Project 19: Determining Heading Using a Digital Compass . 284
Project 20: Determining Attitude Using an Accelerometer . 288

Conclusion . 293

MTT_TOC.indd VIMTT_TOC.indd VI 9/4/07 1:34:06 PM9/4/07 1:34:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Identification . 294
Physical Identification . 296

Project 21: Color Recognition Using a Webcam . 298
Project 22: 2D Barcode Recognition Using a Webcam .303
Project 23: Reading RFID Tags in Processing .308
Project 24: RFID Meets Home Automation . 316

Network Identification . 326
Project 25: IP Geocoding . 328
Project 26: Email from RFID . 333

Conclusion .340

Appendix A: And Another Thing . 342
Other Useful Protocols . 344
Proxies of All Kinds . 347
Mobile Phone Application Development . 352
Other Microcontrollers . 356
New Tools . 358

Appendix B: Where to Get Stuff . 360
Hardware . 362
Software . 366

Appendix C: Program Listings . 368

Index . 419

MTT_TOC.indd VIIMTT_TOC.indd VII 9/4/07 1:34:32 PM9/4/07 1:34:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

VIII MAKING THINGS TALK

MTT_Chapter00.indd VIIIMTT_Chapter00.indd VIII 8/31/07 1:10:57 PM8/31/07 1:10:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
A few years ago, Neil Gershenfeld wrote a smart book called When

Things Start to Think. In it, he discussed a world in which everyday

objects and devices are endowed with computational power: in other

words, today. He talked about the implications of devices that exchange

information about our identities, abilities, and actions. It’s a good read,

but I think he got the title wrong. I would have called it When Things

Start to Gossip. Because let’s face it, even the most exciting thoughts

are worthwhile only once you start to talk to someone else about them.

This is a book about learning to make things that have computational

power talk to each other, and about giving people the ability to use

those things to communicate with each other.

Making Things Talk
MAKE: PROJECTS

MTT_Chapter00.indd IXMTT_Chapter00.indd IX 8/30/07 4:26:04 PM8/30/07 4:26:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

X MAKING THINGS TALK

For a couple of decades now, computer scientists have
used the term object-oriented programming to refer to
a style of software development in which programs and
subprograms are thought of as objects. Like physical
objects, they have properties and behaviors. They inherit
these properties from the prototypes from which they
descend. The canonical form of any object in software is
the code that describes its type. Software objects make it
easy to recombine objects in novel ways. You can reuse a
software object, if you know its interface, the collection of
properties and methods that its creator allows you access
to (and documents, so that you know how to use them). It
doesn’t matter how a software object does what it does,
as long as it does it consistently. Software objects are
most effective when they’re easy to understand and when
they work well with other objects.

Who This Book Is For
This book is written for people who want to make things talk to other things. Maybe you’re
a science teacher who wants to show your students how to monitor weather conditions at
several locations around your school district simultaneously, or a sculptor who wants to
make a whole room of choreographed mechanical sculptures. You might be an industrial
designer who needs to be able to build quick mockups of new products, modeling both
their forms and their functions. Maybe you’re a cat owner, and you’d like to be able to play
with your cat while you’re away from home. It’s a primer for people with little technical
training and a lot of interest. It’s for people who want to get projects done.

The main tools in this book are personal computers, web
servers, and microcontrollers, the tiny computers inside
everyday appliances. Over the past decade, microcontrollers
and the programming tools for them have gone from being
arcane items to common, easy-to-use tools. Elementary
school students are using the tools that graduate students
were baffled by only a decade ago. During that time, my
colleagues and I have taught people from diverse back-
grounds (few of them computer programmers) how to use
these tools to increase the range of physical actions that
computers can sense, interpret, and respond to.

In recent years, there’s been a rising interest among
people using microcontrollers to make their devices not

only sense and control the physical world, but also talk to
other things about what they’re sensing and controlling.
If you’ve built something with a Basic Stamp or a Lego
Mindstorms kit, and wanted to make that thing communi-
cate with other things you or others have built, this book
is for you. It is also useful for software programmers
familiar with networking and web services who want an
introduction to embedded network programming.

If you’re the type of person who likes to get down to
the very core of a technology, you may not find what
you’re looking for in this book. There aren’t detailed code
samples for Bluetooth or TCP/IP stacks, nor are there
circuit diagrams for Ethernet controller chips. The

In the physical world, we’re surrounded by all kinds of
electronic objects: clock radios, toasters, mobile phones,
music players, children’s toys, and more. It can take a
lot of work and a significant amount of knowledge to make
a useful electronic gadget. It can take almost as much
knowledge to make those gadgets talk to each other in
useful ways. But that doesn’t have to be the case. Electronic
devices can be — and often are — built up from modules
with simple, easy-to-understand interfaces. As long as you
understand the interfaces, you can make anything from
them. Think of it as object-oriented hardware. Understand-
ing the ways in which things talk to each other is central to
making this work. It doesn’t matter whether the object is a
toaster, an email program on your laptop, or a networked
database. All of these objects can be connected if you can
figure out how they communicate. This book is a guide to
some of the tools for making those connections.
X

MTT_Chapter00.indd XMTT_Chapter00.indd X 8/30/07 4:26:55 PM8/30/07 4:26:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE XI

Many people whose experience of programming begins
with microcontrollers can do wonderful things with
some sensors and a couple of servomotors, but may not
have done much in the way of communication between
the microcontroller and other programs on a personal
computer. Similarly, many experienced network and
multimedia programmers have never experimented with
hardware of any sort, including microcontrollers. If you’re
either of these people, this book is for you. Because the
audience of this book is diverse, you may find some of the
introductory material a bit simple, depending on which
background you’re coming from. If so, feel free to skip past
the stuff you know and get to the meaty parts.

If you’ve never used a microcontroller, you’ll need a little
background before starting with this book. My previous
book, Physical Computing: Sensing and Controlling the
Physical World with Computers, co-authored with Dan

What You Need to Know
In order to get the most from this book, you should have a basic knowledge of electronics
and programming microcontrollers, some familiarity with the Internet, and access to both.

Contents of This Book
This book is composed of explanations of the concept that underlie networked objects,
followed by recipes to illustrate each set of concepts. Each chapter contains instructions on
how to build working projects that make use of the new ideas introduced in that chapter.

In Chapter 1, you’ll encounter the major programming
tools in the book, and get to “Hello World!” on each of them.

Chapter 2 introduces the most basic concepts needed to
make things talk to each other. It covers the characteristics
that need to be agreed upon in advance, and how keeping

those things separate in your mind helps troubleshooting.
You’ll build a simple project that features one-to-one serial
communication between a microcontroller and a personal
computer using Bluetooth radios as an example of modem
communication. You’ll learn about data protocols, modem
devices, and address schemes.

components used here strike a balance between simplic-
ity, flexibility, and cost. They use object-oriented hardware,
requiring relatively little wiring or code. They’re designed

to get you to the end goal of making things talk to each
other as fast as possible.
X

O’Sullivan, introduces the fundamentals of electronics,
microcontrollers, and physical interaction design for
beginning readers.

You should also have a basic understanding of computer
programming before reading much further. If you’ve never
done any programming, check out the Processing pro-
gramming environment at www.processing.org. Process-
ing is a simple language designed for nonprogrammers
to learn how to program, yet it’s powerful enough to do a
number of advanced tasks. It will be used throughout this
book whenever graphic interface programming is needed.

There are code examples in a few different programming
languages in this book. They’re all fairly simple examples,
however, so if you don’t want to work in the languages
provided, you can rewrite them in your favorite language
using the comments in these examples.
X

MTT_Chapter00.indd XIMTT_Chapter00.indd XI 8/30/07 4:27:21 PM8/30/07 4:27:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

XII MAKING THINGS TALK

Some of them, like Jameco (www.jameco.com), Digi-Key
(www.digikey.com), and Newark (www.newarkinone.com;
their sister company in Europe is Farnell, www.farnell.
com), are general electronics parts retailers, and sell many
of the same things as each other. A full list of suppliers is
listed in Appendix B. If a part is commonly found at many
retailers, it is noted. Other parts are specialty parts, available
from only one or two vendors. I’ve noted that too. Feel free
to use substitute parts for things you are familiar with.

Because it’s easy to order goods online, you might be
tempted to communicate with vendors entirely through
their websites. Don’t be afraid to pick up the phone as well.
Particularly when you’re new to this type of project, it
helps to talk tosomeone about what you’re ordering, and to
ask questions. You’re likely to find helpful people at the end
of the phone line for most of the retailers listed here. In
Appendix B, I’ve listed phone numbers wherever possible.
Use them.
X

On Buying Parts
You’ll need a lot of parts for all of the projects in this book. As a result, you’ll learn about
a lot of vendors. Because there are no large electronics parts retailers in my city, I buy
parts online all the time. If you’re lucky enough to live in an area where you can buy from
a brick-and-mortar store, good for you! If not, get to know some of these vendors.

Chapter 3 introduces a more complex network: the
Internet. It covers the basic devices that hold it together,
and the basic relationships between devices. You’ll see the
messages that underlie some of the most common tasks
you do on the Internet every day, and learn how to send
those messages. You’ll write your first set of programs to
allow you to send data across the Net based on a physical
activity in your home.

In Chapter 4, you’ll build your first embedded device. You’ll
get more experience with command-line connections to
the Net, and you’ll connect a microcontroller to a web
server without using a desktop or laptop computer as an
intermediary.

Chapter 5 takes the Net connection a step further by
explaining socket connections, which allow for longer
interaction. In this chapter, you’ll learn how to write a
server program of your own that you can connect to from
an embedded device, a personal computer, or anything
else connected to the Net. You’ll connect to this server
program from the command line and from a microcon-
troller, in order to understand how devices of different
types can connect to each other through the same server.

Chapter 6 introduces wireless communication. You’ll learn
some of the characteristics of wireless, along with its
possibilities and limitations. Several short examples in this

chapter enable you to say “Hello World!” over the air in a
number of ways.

Chapter 7 offers a contrast to the socket connections
of Chapter 5, introducing message-based protocols like
UDP on the Internet and ZigBee and 802.15.4 for wireless
networks. Instead of using the client-server model used in
the earlier chapters, here you’ll learn how to design con-
versations where each object in a network is equal to the
others, exchanging information one message at a time.

Chapter 8 is about location. It introduces a few tools
to help you locate things in physical space, and some
thoughts on the relationship between physical location and
network relationships.

Chapter 9 deals with identification in physical space and
network space. In that chapter, you’ll learn a few tech-
niques for generating unique network identities based on
physical characteristics. You’ll also learn a bit about how a
networked device’s characteristics can be determined.

In the appendices, you’ll find a few extra pieces that weren’t
appropriate to the main chapters, but that are very useful
nonetheless. You’ll also find a list of hardware and software
resources for networked projects. In the final appendix,
you'll find code listings for all of the programs in the book.
X

MTT_Chapter00.indd XIIMTT_Chapter00.indd XII 8/30/07 4:27:44 PM8/30/07 4:27:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE XIII

For example, writing a program that uses several chunks of
code from this book does not require permission. Selling
or distributing a CD-ROM of examples from O’Reilly books
does require permission. Answering a question by citing
this book and quoting example code does not require
permission. Incorporating a significant amount of example
code from this book into your product’s documentation
does require permission.

We appreciate attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Making
Things Talk: Practical Methods for Connecting Physical
Objects, by Tom Igoe. Copyright 2007 O’Reilly Media,
978-0-596-51051-0.” If you feel that your use of code
examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
X

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code.

Even though we want you to be adventurous, we also
want you to be safe. Please don’t take any unnecessary
risks in building the projects that follow. Every set of
instructions is written with safety in mind. Ignore the
safety instructions at your own peril. Be sure you have
the appropriate level of knowledge and experience to
get the job done in a safe manner.

Please keep in mind that the projects and circuits shown
in this book are for instructional purposes only. Details like
power conditioning, automatic resets, RF shielding, and
other things that make an electronic product certifiably
ready for market are not included here. If you’re designing
real products to be used by people other than yourself,
please do not rely on this information alone.

Using Circuit Examples
In building the projects in this book, you’re
going to break things and void warranties.
If you’re averse to this, put this book down
and walk away. This is not a book for those
who are squeamish about taking things
apart without knowing whether they’ll go
back together again.

Technology, and the laws and limitations imposed by

manufacturers and content owners, are constantly changing.

Thus, some of the projects described may not work, may be

inconsistent with current laws or user agreements, or may

damage or adversely affect some equipment.

Your safety is your own responsibility, including proper use

of equipment and safety gear, and determining whether you

have adequate skill and experience. Power tools, electricity,

and other resources used for these projects are dangerous,

unless used properly and with adequate precautions,

including safety gear. Some illustrative photos do not depict

safety precautions or equipment, in order to show the

project steps more clearly. These projects are not intended

for use by children.

Use of the instructions and suggestions in this book is at

your own risk. O’Reilly Media, Inc., disclaims all responsibility

for any resulting damage, injury, or expense. It is your

responsibility to make sure that your activities comply with

applicable laws, including copyright.

!

MTT_Chapter00.indd XIIIMTT_Chapter00.indd XIII 8/30/07 4:28:10 PM8/30/07 4:28:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

XIV MAKING THINGS TALK

The Interactive Telecommunications Program in the Tisch
School of the Arts at New York University has been my
home for the past decade or more. It is a lively and warm
place to work, crowded with many talented people. This
book grew out of a class called Networked Objects that I
have taught there for several years. I hope that the ideas
herein represent the spirit of the place, and give you a
sense of my own enjoyment working there.

Red Burns, the department’s chair and founder, has
supported me since I first entered this field. She’s indulged
my many flights of fancy, and brought me firmly down
to earth when needed. She has challenged me on every
project to make sure that I use technology not for its own
sake, but always in the service of empowering people.

Dan O’Sullivan introduced me to physical computing and
then generously allowed me to share in teaching it and
shaping its role at ITP. He’s been a great advisor and col-
laborator, and offered constant feedback as I worked.
Most of the chapters started with a rambling conversation
with Dan. His fingerprints are all over this book, and it’s a
better book for it.

Clay Shirky, Daniel Rozin, and Dan Shiffman have also
been close advisors on this project. Clay’s watched
indulgently as the pile of parts mounted in our office and
interrupted his own writing to offer opinions on my ideas
as they came up. Daniel Rozin has and offered valuable
critical insight as well, and his ideas are heavily influential
in this book. Dan Shiffman read many drafts and offered
great feedback. He also contributed many great code
samples and libraries.

Fellow faculty members Marianne Petit, Nancy Hechinger,
and Jean-Marc Gauthier have been supportive through-
out the writing, offering encouragement and inspiration,
covering departmental duties for me, and offering inspira-
tion through their work.

The rest of the faculty and staff at ITP have also made this
possible. George Agudow, Edward Gordon, Midori Yasuda,
Megan Demarest, Nancy Lewis, Robert Ryan, John Duane,
Marlon Evans, Tony Tseng, and Gloria Sed have tolerated

Acknowledgments
This book is the product of many conversations and collaborations. It would not have
been possible without the support and encouragement of my own network.

all kinds of insanity in the name of physical computing and
networked objects, and made things possible for me and
the other faculty and students. Research residents Carlyn
Maw, Todd Holoubek, John Schimmel, Doria Fan, David
Nolen, Peter Kerlin, and Michael Olson have assisted both
faculty and students over the past few years to realize
projects that have influenced the ones you see in these
chapters, both in their own classes and in general. Faculty
members Patrick Dwyer, Michael Schneider, Greg Shakar,
Scott Fitzgerald, Jamie Allen, Shawn Van Every, James Tu,
and Raffi Krikorian have used the tools from this book in
their classes, or have lent techniques of their own to the
projects described here.

The students of ITP have pushed the boundaries of possi-
bility in this area, and their work is reflected in many of the
projects. I have cited specifics where they come up, but in
general I’d like to thank all the students who’ve taken the
Networked Objects class over the years, as they’ve helped
me to understand what this is all about. Those from the
2006 and 2007 classes have been particularly influential,
as they’ve had to learn the stuff from early drafts of this
book, and have caught several important mistakes in the
manuscript.

A few people have contributed significant amounts of
code, ideas, or labor to this book. Geoff Smith gave me
the original title for the course, Networked Objects, and
introduced me to the idea of object-oriented hardware.
John Schimmel showed me how to get a microcontroller
to make HTTP calls. Dan O’Sullivan’s server code was the
root of all of my server code. All of my Processing code
is more readable because of Dan Shiffman’s coding style
advice. Robert Faludi contributed many pieces of code,
made the XBee examples in this book simpler to read, and
corrected errors in many of them. Max Whitney helped me
get Bluetooth exchanges working, and to get the cat bed
finished (despite her allergies!). Dennis Crowley made the
possibilities and limitations of 2D barcodes clear to me.
Chris Heathcote heavily influenced my ideas on location.
Durrell Bishop helped me to think about identity. Mike
Kuniavsky and the folks at the Sketching in Hardware
workshops in 2006 and 2007 helped me to see this work
as part of a larger community, and introduced me to a lot

MTT_Chapter00.indd XIVMTT_Chapter00.indd XIV 8/30/07 4:28:44 PM8/30/07 4:28:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE XV

of new tools. Noodles the cat put up with all manner of
silliness in order to finish the cat bed and its photos. No
animals were harmed in the making of this book, though
one was bribed with catnip.

Casey Reas and Ben Fry have made the software side of this
book possible by creating Processing. Without Processing,
the software side of networked objects was much more
painful. Without Processing, there would be no simple,
elegant programming interface for Arduino and Wiring.
The originators of Arduino and Wiring have made the hard-
ware side of this book possible. Massimo Banzi, Gianluca
Martino, David Cuartielles, and David Mellis on Arduino,
Hernando Barragán on Wiring, and Nicholas Zambetti
bridging the two. I have been lucky to work with them.

Though I’ve tried to use and cite many hardware vendors
in this book, special mention must be made of Nathan
Seidle at SparkFun. This book would not be what it is
without him. While I’ve been talking about object-oriented
hardware for years, Nathan and the folks at SparkFun have
been quietly making it a reality.

Thanks also to the support team at Lantronix. Their
products are good and their support is excellent. Garry
Morris, Gary Marrs, and Jenny Eisenhauer have answered
countless emails and phone calls from me helpfully
and cheerfully.

I have drawn ideas from many colleagues from around the
world in these projects through conversations in workshops
and visits. Thanks to the faculty and students I’ve worked
with at the Royal College of Art’s Interaction Design program,
UCLA’s Digital Media | Arts program, the Interaction Design
program at the Oslo School of Architecture and Design,
Interaction Design Institute Ivrea, and the Copenhagen
Institute of Interaction Design.

Many networked object projects have inspired this
writing. Thanks to those whose work illustrates the
chapters: Tuan Anh T. Nguyen, Joo Youn Paek, Doria Fan,
Mauricio Melo, and Jason Kaufman, Tarikh Korula and
Josh Rooke-Ley of Uncommon Projects, Jin-Yo Mok, Alex
Beim, Andrew Schneider, Gilad Lotan and Angela Pablo,
Mouna Andraos and Sonali Sridhar, Frank Lantz and
Kevin Slavin of Area/Code, and Sarah Johansson.

Working for MAKE has been a great experience. Dale
Dougherty has been encouraging of all of my ideas, patient
with my delays, and indulgent when I wanted to try new
things. He’s never said no without offering an acceptable

alternative (and often a better one). Brian Jepson has gone
above and beyond the call of duty as an editor, building all
of the projects, suggesting modifications, debugging code,
helping with photography and illustrations, and being
endlessly encouraging. It’s an understatement to say that
I couldn’t have done this without him. I could not have
asked for a better editor. Thanks to Nancy Kotary for her
excellent copyedit of the manuscript. Katie Wilson made
this book far better looking and readable that I could have
hoped for. Thanks also to Tim Lillis for the illustrations.
Thanks to all of the MAKE team.

Thanks to my agents: Laura Lewin, who got the ball rolling;
Neil Salkind, who picked it up from her; and the whole
support team at Studio B. Thanks finally to my family and
friends who listened to me rant enthusiastically or complain
bitterly as this book progressed. Much love to you all.
X

We’d Like to Hear from You
Please address comments and questions concerning this book

to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a website for this book, where we list errata,

examples, and any additional information. You can access

this page at: www.makezine.com/go/MakingThingsTalk

To comment or ask technical questions about this book,

send email to: bookquestions@oreilly.com

Maker Media is a division of O’Reilly Media devoted entirely

to the growing community of resourceful people who believe

that if you can imagine it, you can make it. Consisting of MAKE

Magazine, CRAFT Magazine, Maker Faire, and the Hacks series

of books, Maker Media encourages the Do-It-Yourself mentality

by providing creative inspiration and instruction.

For more information about Maker Media, visit us online:

MAKE: www.makezine.com

CRAFT: www.craftzine.com

Maker Faire: www.makerfaire.com

Hacks: www.hackszine.com

MTT_Chapter00.indd XVMTT_Chapter00.indd XV 8/30/07 4:29:04 PM8/30/07 4:29:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

16 MAKING THINGS TALK

MTT_Chapter1.indd Sec1:16MTT_Chapter1.indd Sec1:16 8/23/07 2:17:19 PM8/23/07 2:17:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

The Tools
This book is a cookbook of sorts, and this chapter covers the staple

ingredients. The concepts and tools you’ll use in every chapter are

introduced here. There’s enough information on each tool to get you

to the point where you can make the tool say “Hello World!”
Chances are you’ve used some of the tools in this chapter before, or

other tools just like them. Skip past the things you know and jump into

learning the tools that are new to you. You may want to explore some of

the less-familiar tools on your own to get a sense of what they can do.

The projects in the following chapters only scratch the surface of what’s

possible for most of these tools. References for further investigation

are provided.

1
MAKE: PROJECTS

Happy Feedback Machine by Tuan Anh T. Nguyen
The main pleasure of interacting with this piece comes from the feel of flipping the switches and turning the knobs.
The lights and sounds produced as a result are secondary, and most people who play with it remember the feel of
it rather than its behavior.

MTT_Chapter1.indd Sec1:17MTT_Chapter1.indd Sec1:17 8/23/07 2:18:20 PM8/23/07 2:18:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

18 MAKING THINGS TALK

It Starts with the Stuff You Touch
All of the objects that you’ll encounter in this book, tangible or intangible, will have
certain behaviors. Software objects will send and receive messages, store data, or both.
Physical objects will move, light up, or make noise. The first question to ask about any of
them is: what does it do? The second is: how do I make it do what it’s supposed to do?
Or, more simply, what is its interface?

An object’s interface is made up of three elements. First,
there’s the physical interface. This is the stuff you touch.
The knobs, switches, keys, and other sensors that make
up the physical interface react to your actions. The
connectors that join objects are also part of the physical
interface. Many of the projects in this book will show you
how to build physical interfaces. Every network of objects
begins and ends with a physical interface. Even though
some objects in a network (software objects) have no
physical interface, people build their mental models of
how a system works based on the physical interface. A
computer is much more than the keyboard, mouse, and
screen, but that’s what we think of it as, because that’s
what we see and touch. You can build all kinds of wonderful
functions into your system, but if those functions aren’t
apparent in the things people get to see, hear, and touch,
your wonderful functions will never get used. Remember
the lesson of the VCR clock that constantly blinks 12:00
because no one can be bothered to learn how to set it:
if the physical interface isn’t good, the rest of the system
suffers.

Second, there’s the software interface, the commands
that you send to the object to make it respond. In some
projects, you’ll invent your own software interface, and in
others, you’ll rely on existing interfaces to do the work for
you. The best software interfaces have simple, consistent

functions that result in predictable outputs. Unfortunately,
not all software interfaces are as simple as you’d like
them to be, so be prepared to have to experiment a little
to get some software objects to do what you think they
should do. When you’re learning a new software interface,
it helps to approach it mentally in the same way you do
with a physical interface. Don’t try to use all the functions
at once. Learn what each function does on its own before
you try to use them all together. You don’t learn to play the
piano by starting with a Bach fugue — you start one note
at a time. Likewise, you don’t learn a software interface by
writing a full application with it — you learn it one function
at a time. There are many projects in this book; if you find
any of their software functions confusing, write a simple
program that demonstrates just that function, then return
to the project.

Finally, there’s the electrical interface, the pulses of electrical
energy sent from one device to another to be interpreted as
information. Unless you’re designing new objects or the
connections between them, you never have to deal with
this interface. When you’re designing new objects or the
networks that connect them, however, you have to know
and understand a few things about the electrical interface,
so that you know how to match up objects that might have
slight differences in their electrical interfaces.
X

It’s About Pulses
In order to communicate with each other, objects use communications protocols.
A protocol is a series of mutually agreed-upon standards for communication between
two or more objects.

MTT_Chapter1.indd Sec1:18MTT_Chapter1.indd Sec1:18 8/23/07 2:18:51 PM8/23/07 2:18:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 19

Serial protocols like RS-232, USB, and IEEE 1394 (also
known as FireWire and i.Link) connect computers to
printers, hard drives, keyboards, mice, and other periph-
eral devices. Network protocols like Ethernet and TCP/IP
connect multiple computers to each other through
network hubs, routers, and switches. A communications
protocol usually defines the rate at which messages are
exchanged, the arrangement of data in the messages, and
the grammar of the exchange. If it’s a protocol for physical
objects, it will also specify the electrical characteristics,
and sometimes even the physical shape of the connectors.
Protocols don’t specify what happens between objects,
however. The commands to make an object do something
rely on protocols in the same way that clear instructions
rely on good grammar. You can’t give good instructions if
you can’t form a good sentence.

One thing that all communications protocols share, from
the simplest chip-to-chip message to the most complex
network architecture, is this: it’s all about pulses of energy.
Digital devices exchange information by sending timed

pulses of energy across a shared connection. The USB
connection from your mouse to your computer uses
two wires for transmission and reception, sending timed
pulses of electrical energy across those wires. Likewise,
wired network connections are made up of timed pulses of
electrical energy sent down the wires. For longer distances
and higher bandwidth, the electrical wires may be replaced
with fiber optic cables carrying timed pulses of light. In
cases where a physical connection is inconvenient or
impossible, the transmission can be sent using pulses of
radio energy between radio transceivers (a transceiver
is two-way radio, capable of transmitting and receiving).
The meaning of data pulses is independent of the medium
that’s carrying them. You can use the same sequence of
pulses whether you’re sending them across wires, fiber
optic cables, or radios. If you keep in mind that all of the
communication you’re dealing with starts with a series of
pulses, and that somewhere there’s a guide explaining the
sequence of those pulses, you can work with any commu-
nication system you come across.
X

The second type of computer you’ll encounter in this book,
the microcontroller, has no physical interface that humans
can interact with directly. It’s just an electronic chip with
input and output pins that can send or receive electrical
pulses. Using a microcontroller is a three-stage process:

1. You connect sensors to the inputs to convert physical
energy like motion, heat, and sound into electrical energy.

2. You attach motors, speakers, and other devices to the
outputs to convert electrical energy into physical action.

3. Finally, you write a program to determine how the input
changes affect the outputs.

In other words, the microcontroller’s physical interface is
whatever you make of it.

The third type of computer in this book, the network
server, is basically the same as a desktop computer, and
may even have a keyboard, screen, and mouse. Even
though it can do all the things you expect of a personal
computer, its primary function is to send and receive data
over a network. Most people using servers don’t think
of them as physical things, because they only interact
with them over a network, using their local computers as
physical interfaces to the server. A server’s most important
interface for most users’ purposes is its software interface.

Computers of all Shapes and Sizes
You’ll encounter at least four different types of computers in this book, grouped
according to their physical interfaces. The most familiar of these is the personal
computer. Whether it’s a desktop or a laptop machine, it’s got a keyboard, a screen, and
a mouse, and you probably use it just about every working day. These three elements:
the keyboard, the screen, and the mouse — make up its physical interface.

MTT_Chapter1.indd Sec1:19MTT_Chapter1.indd Sec1:19 8/23/07 2:19:11 PM8/23/07 2:19:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

20 MAKING THINGS TALK

The fourth group of computers is a mixed bag: mobile
phones, music synthesizers, and motor controllers, to
name a few. Some of them will have fully developed
physical interfaces, some of them will have minimal
physical interfaces but detailed software interfaces, and
most will have a little of both. Even though you don’t

normally think of these devices as computers, they are.
When you think of them as programmable objects, with
interfaces that you can manipulate, it’s easier to figure out
how they can all communicate with each other, regardless
of their end function.
X

Good Habits
Networking objects is a bit like love. The fundamental problem in both is that when
you’re sending a message, you never really know whether the receiver understands
what you’re saying, and there are a thousand ways for your message to get lost or
garbled in transmission.

You may know why you feel the way you do, but your
partner doesn’t. All he or she has to go on are the words
you say and the actions you take. Likewise, you may know
exactly what message your local computer is sending,
how it’s sending it, and what all the bits mean, but the
remote computer has no idea what they mean unless you
program it to understand them. All it has to go on are the
bits it receives. If you want reliable, clear communications
(in love or networking), there are a few simple things you
have to do:

• Listen more than you speak.
• Never assume that what you said is what they heard.
• Agree on how you’re going to say things in advance.
• Ask politely for clarification when messages aren’t clear.

Listen More Than You Speak
The best way to make a good first impression, and to main-
tain a good relationship, is to be a good listener. Listening
is more difficult than speaking. You can speak anytime you
want to, but you never know when the other person is
going to say something, so you have to listen all the time.
In networking terms, this means that you should write your
programs such that they’re listening for new messages most
of the time, and sending messages only when necessary.
It’s often easier to send out messages all the time rather
than figure out when it’s appropriate, but it can lead to all
kinds of problems. It usually doesn’t take a lot of work to
limit your sending, and the benefits far outweigh the costs.

Never Assume
What you say is not always what the other person hears.
Sometimes it’s a matter of misinterpretation, and other
times, you may not have been heard clearly. If you assume
that the message got through and continue on obliviously,
you’re in for a world of hurt. Likewise, you may be tempted
to work out all the logic of your system, and all the steps of
your messages before you start to connect things together,
then build it, then test it all at once. Avoid that temptation.

It’s good to plan the whole system out in advance, but
build it and test it in baby steps. Most of the errors that
occur in building these projects occur in the communica-
tion between objects. Always send a quick “Hello World!”
message from one object to the others and make sure that
the message got there intact before you proceed to the
more complex details. Keep that “Hello World!” example on
hand for testing when communication fails.

Getting the message wrong isn’t the only wrong step
you can make. Most of the projects in this book involve
building the physical, software, and electrical elements
of the interface. One of the most common mistakes
people make when developing hybrid projects like these
is to assume that the problems are all in one place. Quite
often, I’ve sweated over a bug in the software transmis-
sion of a message, only to find out later that the receiving
device wasn’t even connected, or wasn’t ready to receive
messages. Don’t assume that communication errors are in
the element of the system with which you’re most familiar.

MTT_Chapter1.indd Sec1:20MTT_Chapter1.indd Sec1:20 8/23/07 2:19:32 PM8/23/07 2:19:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 21

They’re most often in the element with which you’re least
familiar, and therefore are avoiding. When you can’t get a
message through, think about every link in the chain from
sender to receiver, and check every one. Then check the
links you overlooked.

Agree on How You Say Things
In good relationships, you develop a shared language
based on shared experience. You learn the best ways to
say things so that your partner will be most receptive,
and you develop shorthand for expressing things that you
repeat all the time. Good data communications also rely
on shared ways of saying things, or protocols. Sometimes
you make up a protocol yourself for all the objects in
your system, and other times you have to rely on existing
protocols. If you’re working with a previously established
protocol, make sure you understand what all the parts are
before you start trying to interpret it. If you have the luxury
of making up your own protocol, make sure you’ve consid-
ered the needs of both the sender and receiver when you
define it. For example, you might decide to use a protocol
that’s easy to program on your web server, but turns out
to be impossible to handle on your microcontroller. A little
thought to the strengths and weaknesses on both sides of
the transmission and a little compromise before you start
to build will make things flow much more smoothly.

Ask Politely for Clarification
Messages get garbled in countless ways. Sometimes you
hear one thing; it may not make much sense, but you act
on it … only to find out that your partner said something
entirely different from what you thought. It’s always best
to ask nicely for clarification to avoid making a stupid
mistake. Likewise, in network communications, it’s wise to
check that any messages you receive make sense. When
they don’t, ask for a repeat transmission. It’s also wise
to check that a message was sent, rather than assume.
Saying nothing can be worse than saying something
wrong. Minor problems can become major when no one
speaks up to acknowledge that there’s a problem. The
same thing can occur in network communications. One
device may wait forever for a message from the other
side, not knowing that the remote device is unplugged,
or perhaps it didn’t get the initial message. When no
response is forthcoming, send another message. Don’t
resend it too often, and give the other party time to reply
before resending. Acknowledging messages may seem
like a luxury, but it can save a whole lot of time and energy
when you’re building a complex system.
X

Tools
As you’ll be working with the physical, software, and electrical interfaces of objects,
the tools you’ll need are physical tools, software, and (computer) hardware.

Physical Tools
If you’ve worked with electronics or microcontrollers
before, chances are you have your own hand tools already.
Figure 1-1 shows the ones used most frequently in this
book. They’re common tools, and can be obtained from
many vendors. A few are listed in Table 1-1.

In addition to hand tools, there are some common elec-
tronic components that you’ll use all the time. They’re
listed as well, with part numbers from the retailers
featured most frequently in this book. Not all retailers will
carry all parts, so there are many gaps in the table.

NOTE: You’ll find a number of component suppliers in this book.

I buy from different vendors depending on who’s got the best

and the least expensive version of each part. Sometimes it’s easier

to buy from a vendor that you know carries what you need rather

than search through the massive catalog of a vendor who might

carry it cheaper. Feel free to substitute your favorite vendors.

A list of vendors can be found in Appendix B.

MTT_Chapter1.indd Sec1:21MTT_Chapter1.indd Sec1:21 8/23/07 2:19:53 PM8/23/07 2:19:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

22 MAKING THINGS TALK

RESISTORS
100! D 100QBK-ND, J 690620
220! D 220QBK-ND, J 690700
470! D 470QBK-ND, J 690785
1K D 1.0KQBK, J 29663
10K D 10KQBK-ND, J 29911
22K D 22KQBK-ND, J 30453
100K D 100KQBK-ND, J 29997
1M D 1.0MQBK-ND, J 29698

CAPACITORS
0.1"F ceramic D 399-4151-ND, J 15270
1"F electrolytic D P10312-ND, J 94161
10"F electrolytic D P11212-ND, J 29891, S COM-00523
100"F electrolytic D P10269-ND, J 158394, S COM-00096

VOLTAGE REGULATORS
3.3V D 576-1134-ND, J 242115, S COM-00526
5V D LM7805CT-ND, J 51262, S COM-00107

ANALOG SENSORS
Flex sensors J 150551, I FLX-01
FSRs P 30056, I FSR-400, 402, 406, 408

LED
T1, Green clear D 160-1144-ND, J 34761
T1, Red, clear D 160-1665-ND, J 94511

TRANSISTORS
2N2222A J 38236
TIP120 J 32993

Table 1-1. Common tools for electronic
and microcontroller work.

DIODES
1N4004-R D 1N4004-E3 or 23GI-ND, J 35992
3.3V zener (1N5226) D 1N5226B-TPCT-ND, J 743488

PUSHBUTTONS
PCB D SW400-ND, J 119011, S COM-00097
Panel Mount D GH1344-ND, J 164559PS

SOLDERLESS BREADBOARDS
various D 438-1045-ND, J 20723, 20600, S PRT-00137

HOOKUP WIRE
red J 36856, S PRT-08023
black J 36792, S PRT-08022
blue J 36767
yellow S PRT-08024

POTENTIOMETER
10K D 29081

HEADER PINS
straight D A26509-20-ND, J 103377, S PRT-00116
right angle D S1121E-36-ND, S PRT-00553

HEADERS
female S PRT-00115

BATTERY SNAP
9V D 2238K-ND, J 101470PS, S PRT-00091

Figure 1-1. See list at right for number references.

1

23

24

22

2
3

4
5

14

15

16

17
21

20

19

18

139

8

7
6

12

11

10

D Digi-Key (digikey.com)
I Images SI (imagesco.com)

J Jameco (jameco.com)
S SparkFun Electronics (sparkfun.com)

MTT_Chapter1.indd Sec1:22MTT_Chapter1.indd Sec1:22 8/23/07 2:20:13 PM8/23/07 2:20:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 23

1 Soldering iron Middle-of-the-line is best
here. Cheap soldering irons die fast, but
a mid-range iron like the Weller WLC-100
work great for small electronic work.
Avoid the Cold Solder irons. They solder
by creating a spark, and that spark can
damage static-sensitive parts like micro-
controllers. Jameco (jameco.com): 146595;
RadioShack: 640-2802 and 640-2078

2 Solder 21-23 AWG solder is best. Get
lead-free solder if you can, it’s healthier
for you. Jameco: 668271; RadioShack:
640-0013

3 Desoldering pump This helps when you
mess up while soldering. Jameco: 305226;
SparkFun (sparkfun.com): TOL-00082

4 Wire stripper, Diagonal cutter, Needle-
nose pliers Avoid the 3-in-1 versions
of these tools. They’ll only make you
grumpy. These three tools are essential
for working with wire, and you don’t
need expensive ones to have good ones.
Wire stripper: Jameco: 159291; RadioShack:
640-2129A; SparkFun: TOL-00089
Diagonal cutter: Jameco: 161411; Radio–
Shack: 640-2043; SparkFun: TOL-00070
Needlenose pliers: Jameco: 35473; Radio–
Shack: 640-2033; SparkFun: TOL-00079

5 Mini-screwdriver Get one with both
Phillips and slotted heads. You’ll use it
all the time. Jameco: 127271; RadioShack:
640-1963

6 Helping hands These make soldering
much easier. Jameco: 681002

7 9–12V DC power supply You’ll use this
all the time, and you’ve probably got a
spare from some dead electronic device.
Make sure you know the polarity of the
plug so you don’t reverse polarity on
a component and blow it up! Most of
the devices shown in this book have a
DC power jack that accepts a 2.1mm
inner diameter/5.5mm outer diameter
plug, so look for an adaptor with the
same dimensions. Jameco: 170245 (12V,
1000mA); RadioShack: 273-1667 (3–12V,
800mA); SparkFun: TOL-00298

8 Power connector, 2.1mm inside diameter/
5.5mm outside diameter You’ll need this
to connect your microcontroller module
or breadboard to a DC power supply.
This size connector is the most common
for the power supplies that will work
with the circuits you’ll be building here.
Jameco: 159610; Digi-Key (digikey.com):
CP-024A-ND

9 Multimeter You don’t need an
expensive one. As long as it measures
voltage, resistance, amperage, and con-
tinuity, it’ll do the job. Jameco: 220812;
RadioShack: 22-810; SparkFun: TOL-00078

10 USB cables You’ll need both USB A-
to-B (the most common USB cables)
and USB A-to-mini-B (the kind that’s
common with digital cameras) for the
projects in this book. SparkFun: CAB-
00512, CAB-00598

11 Serial-to-USB converter This converter
lets you speak TTL serial from a USB
port. Breadboard serial-to-USB modules
like the FT232 modules shown here are
cheaper than the consumer models, and
easier to use in the projects in this book.
SparkFun: BOB-00718 or DEV-08165

12 Alligator clip test leads It’s often hard
to juggle the five or six things you have
to hold when metering a circuit. Clip
leads make this much easier. Jameco:
10444; RadioShack: 278-016; SparkFun:
CAB-00501

13 Microcontroller module The microcon-
trollers shown here are the Arduino NG
and the Arduino Mini. Available from
SparkFun and Make (store.makezine.
com) in the U.S., PCB-Europe in Europe
(pcb-europe.net/catalog/) and from
multiple distributors internationally. See
arduino.cc/en/Main/Buy for details in
your region.

14 Header pins You’ll use these all the
time. It’s handy to have female ones
around as well. Jameco: 103377; Digi-Key:
A26509-20-ND; SparkFun: PRT-00116

15 Spare LEDs for tracing signals LEDs
are to the hardware developer what
print statements are to the software
developer. They let you see quickly if
there’s voltage between two points, or
if a signal’s going through. Keep spares
on hand. Jameco: 3476; RadioShack: 276-
0069; Digi-Key: 160-1144-ND, 160-1665-ND

16 Resistors You’ll need resistors of
various values for your projects. Common
values are listed in Table 1-1.

17 Analog sensors (variable resistors)
There are countless varieties of variable
resistors to measure all kinds of physical
properties. They’re the simplest of
analog sensors, and they’re very easy to
build into test circuits. Flex sensors and
force-sensing resistors are handy for
testing a circuit or a program.
Flex sensors: Jameco: 150551; Images SI:
FLX-01

Force-sensing resistors: Parallax: 30056;
Images SI: FSR-400, 402, 406, 408

18 Capacitors You’ll need capacitors of
various values for your projects. Common
values are listed in Table 1-1.

19 Voltage regulators Voltage regulators
take a variable input voltage and output
a constant (lower) voltage. The two most
common you’ll need for these projects
are 5V and 3.3V. Be careful when using a
regulator that you’ve never used before.
Check the data sheet to make sure you
have the pin connections correct.
3.3V: Digkey: 576-1134-ND; Jameco: 242115;
SparkFun: COM-00526
5V: Digkey: LM7805CT-ND; Jameco: 51262;
SparkFun: COM-00107

20 Pushbuttons There are two types
you’ll find handy: the PCB-mount type
like the ones you find on Wiring and
Arduino boards, used here mostly as
reset buttons for breadboard projects;
and panel-mount types used for
interface controls for end users. But you
can use just about any type you want.
PCB-mount type: Digi-Key: SW400- ND;
Jameco: 119011; SparkFun: COM-00097
Panel-mount type: Digi-Key: GH1344-ND;
Jameco: 164559PS

21 Potentiometers You’ll need potentiom-
eters to let people adjust settings in your
project. Jameco: 29081

22 Solderless breadboard Having a few
around can be handy. I like the ones with
two long rows on either side, so you can
run power and ground on both sides.
Jameco: 20723 (2 bus rows per side); Radio–
Shack: 276-174 (1 bus row per side); Digi-
Key: 438-1045-ND; SparkFun: PRT-00137

23 Ethernet cables A couple of these will
come in handy. Jameco: 522781

24 Black, red, blue, yellow wire 22 AWG
solid-core hook-up wire is best for
making solderless breadboard connec-
tions. Get at least three colors, and
always use red for voltage and black for
ground. A little organization of your wires
can go a long way.
Black: Jameco: 36792
Blue: Jameco: 36767
Green: Jameco: 36821
Red: Jameco: 36856; RadioShack: 278-1215
Yellow: Jameco: 36919
Mixed: RadioShack: 276-173

Handy hand tools for networking objects.

MTT_Chapter1.indd Sec1:23MTT_Chapter1.indd Sec1:23 8/23/07 2:20:43 PM8/23/07 2:20:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

24 MAKING THINGS TALK

Figure 1-2
The Processing editor window.

Software Tools

Processing
The multimedia programming environment used in this
book is called Processing. It’s based on Java, and made for
designers, artists, and others who don’t need to know
all the gory details of programming, but want to get
something done. It’s a useful tool for explaining program-
ming ideas because it takes relatively little Processing
code to make big things happen, such as opening a
network connection, connecting to an external device
through a serial port, or controlling a camera through
FireWire. It’s a free, open source tool available from

It’s not too flashy a program, but it’s a classic. It
should print Hello World! in the message box at

the bottom of the editor window. It’s that easy.

Programs in Processing are called sketches, and all the
data for a sketch is saved in a folder with the sketch’s
name. The editor is very basic, without a lot of clutter to

println("Hello World!\n");Here’s your first Processing
program. Type this into the editor
window, and press the Run button on
the top left-hand side of the toolbar:

8

get in your way. The toolbar has buttons to run and stop
a sketch, create a new file, open an existing sketch, save
the current sketch, or export to a Java applet. You can also
export your sketch as a standalone application from the
File menu. Files are normally stored in a subdirectory of
your Documents folder called Processing, but you can save
them wherever you prefer if you don’t like them there.

www.processing.org. Because it’s based on Java, you can
include Java classes and methods in your Processing
programs. It runs on Mac OS X, Windows, and Linux,
so almost anyone can run Processing on their favorite
operating system. If you don’t like working in Processing,
you should be able to use the code samples here and
their comments as pseudocode for whatever multimedia
environment you prefer. Once you’ve downloaded and
installed Processing on your computer, open the applica-
tion. You’ll get a screen that looks like Figure 1-2.

MTT_Chapter1.indd Sec1:24MTT_Chapter1.indd Sec1:24 8/23/07 2:21:05 PM8/23/07 2:21:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 25

/*

 Triangle drawing program

 Language: Processing

 Draws a triangle whenever the mouse button is not pressed.

 Erases when the mouse button is pressed.

*/

// declare your variables:

float redValue = 0; // variable to hold the red color

float greenValue = 0; // variable to hold the green color

float blueValue = 0; // variable to hold the blue color

// the setup() method runs once at the beginning of the program:

void setup() {

 size(320, 240); // sets the size of the applet window

 background(0); // sets the background of the window to black

 fill(0); // sets the color to fill shapes with (0 = black)

 smooth(); // draw with antialiased edges

}

// the draw() method runs repeatedly, as long as the applet window

// is open. It refreshes the window, and anything else you program

// it to do:

void draw() {

 // Pick random colors for red, green, and blue:

 redValue = random(255);

 greenValue = random(255);

 blueValue = random(255);

 // set the line color:

 stroke(redValue, greenValue, blueValue);

 // draw when the mouse is up (to hell with conventions):

 if (mousePressed == false) {

 // draw a triangle:

 triangle(mouseX, mouseY, width/2, height/2,pmouseX, pmouseY);

 }

 // erase when the mouse is down:

 else {

 background(0);

 fill(0);

 }

}

Here’s a second program that’s a
bit more exciting. It illustrates some of
the main programming structures in
Processing:

8

MTT_Chapter1.indd Sec1:25MTT_Chapter1.indd Sec1:25 8/23/07 2:21:27 PM8/23/07 2:21:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

26 MAKING THINGS TALK

Processing is a fun language to play with,
because you can make interactive graphics

very quickly. It’s also a simple introduction to Java for
beginning programmers. If you’re a Java programmer
already, you can include Java directly in your Process-
ing programs. Processing is expandable through code
libraries. You’ll be using two of the Processing code
libraries frequently in this book: the serial library and the
networking library.

For more on the syntax of Processing, see the language
reference guide at www.processing.org. To learn more
about programming in Processing, check out Processing:
A Programming Handbook for Visual Designers and Artists,
by Casey Reas and Ben Fry (MIT Press, 2007), the creators
of Processing.

BASIC users: If you’ve never used a C-style for-next loop, it can

seem a bit forbidding. What this bit of code does is establish a

variable called myCounter. As long as number is less than or

equal to ten, it executes the instructions in the curly brackets.

myCounter++ tells the program to add one to myCounter

each time through the loop. The equivalent BASIC code is:

for myCounter = 0 to 10

 Print myCounter

next

Mac OS X Users: Once you’ve downloaded and installed

Processing, there’s an extra step you’ll need to take that will

make the projects in this book that use Processing possible.

for (int myCounter = 0; myCounter <=10; myCounter++) {

 println(myCounter);

}

Here’s a typical for-next loop.
Try this in a sketch of its own (to
start a new sketch, select New from
Processing’s File menu):

8

Every Processing program has two main routines, setup()
and draw(). setup() happens once at the beginning of the
program. It’s where you set all your initial conditions, like
the size of the applet window, initial states for variables,
and so forth. draw() is the main loop of the program. It
repeats continuously until you close the applet window.

In order to use variables in Processing, you have to declare
the variable’s data type. In the preceding program, the
variables redValue, greenValue, and blueValue are all
float types, meaning that they’re floating decimal-point
numbers. Other common variable types you’ll use are ints

(integers), booleans (true or false values), Strings of text,
and bytes.

Like C, Java and many other languages, Processing uses
C-style syntax. All functions have a data type, just like
variables (and many of them are the void type, meaning
that they don’t return any values). All lines end with a
semicolon, and all blocks of code are wrapped in curly
brackets. Conditional statements (if-then statements),
for-next loops, and comments all use the C syntax as well.
The preceding code illustrates all of these except the for-
next loop.

Go to the Processing application directory, then to the libraries/

serial/ subdirectory. There’s a file there called macosx_setup.

command. Double-click this. It will run a script that enables

Processing to use serial communication to USB, Bluetooth, and

other devices. A terminal window will open and run a script

that will ask you a few questions. It will also ask for your admin-

istrator password, so don’t run it unless you have administrator

access to your machine. Say “yes” to anything it asks, and provide

your password when needed. When it’s done, you’ll be able to use

the serial ports of your computer through Processing. You’ll be

making heavy use of this capability later on in this book.

Remote Access Applications
One of the most effective debugging tools you’ll use
in making the projects in this book is a command-line
remote access program, which allows you access to the
command-line interface of a remote computer. If you’ve
never used a command-line interface before, you’ll find it
a bit awkward at first, but you get used to it pretty quickly.
This tool is especially important when you need to log into
a web server, as you’ll need the command line to create
PHP scripts that will be used in this book.

Most web hosting providers are based on Linux, BSD,
Solaris or some other Unix-like operating system. So, when
you need to do some work on your web server, you may
need to make a command-line connection to your web
server.

MTT_Chapter1.indd Sec1:26MTT_Chapter1.indd Sec1:26 8/23/07 2:21:49 PM8/23/07 2:21:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 27

Figure 1-3
The main PuTTY window.

}If you already know how to create PHP and HTML
documents and upload them to your web server,

 you can skip ahead to the “PHP” section.

In a command-line interface, everything is done by typing
commands at the cursor. The programs you’ll be running
and the files you’ll be writing and reading aren’t on your
machine. When you’re using the PHP programming language
described shortly, for example, you’ll be using programs
and reading files directly on the web host’s computer.

Although this is the most direct way to work with PHP,
some people prefer to work more indirectly, by writing text
files on their local computers and uploading them to the
remote computer. Depending on how restrictive your web
hosting service is, this may be your only option (however,
there are many inexpensive hosting companies that offer
full command-line access). Even if you prefer to work this
way, there are times in this book when the command line
is your only option, so it’s worth getting to know a little bit
about it now.

On Windows computers, there are a few remote access
programs available, but the one that you’ll use here is
called PuTTY. You can download it from www.puttyssh.org.
Download the Windows-style installer and run it. On Mac
OS X and Linux, you can use OpenSSH, which is included
with both operating systems, and can be run in the
Terminal program with the command ssh.

Before you can run OpenSSH, you’ll need to launch a
terminal emulation program, which gives you access to
your Linux or Mac OS X command line. On Mac OS X,
the program is called Terminal, and you can find it in the
Utilities subdirectory of the Applications directory. On Linux,
look for a program called xterm, rxvt, Terminal, or Konsole.

NOTE: ssh is a more modern cousin of a longtime Unix remote

access program called telnet. ssh is more secure, in that it

scrambles all data sent from one computer to another before

sending it, so it can’t be snooped on en route. telnet sends all data

from one computer to another with no encryption. You should use

ssh to connect from one machine to another whenever you can.

Where telnet is used in this book, it’s because it’s the only tool

that will do what’s needed for the examples in question. Think of

telnet as an old friend: maybe not the coolest guy on the block,

maybe he’s a bit of a gossip, but he's stood by you forever, and

you know you can trust him to do the job when everyone else lets

you down.

X

Mac OS X and Linux
Open your terminal program. These Terminal
applications give you a plain text window with a
greeting like this:

Last login: Wed Feb 22 07:20:34 on ttyp1
ComputerName:~ username$

Type ssh username@myhost.com at the command
line to connect to your web host. Replace username
and myhost.com with your username and host
address.

Windows
On Windows, you’ll need to start up PuTTY (see Figure
1-3). To get started, type myhost.com (your web
host’s name) in the Host Name field, choose the SSH
protocol, and then click Open.

The computer will try to connect to the remote host,
and asks for your password when it connects. Type it
(you won’t see what you type), followed by the Enter key.

Making the SSH Connection

MTT_Chapter1.indd Sec1:27MTT_Chapter1.indd Sec1:27 8/23/07 2:22:13 PM8/23/07 2:22:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

28 MAKING THINGS TALK

Once you’ve connected to the remote web server, you
should see something like this:

Last login: Wed Feb 22 08:50:04 2006 from 216.157.45.215

[userid@myhost ~]$

Now you’re at the command prompt of your web host’s
computer, and any command you give will be executed on
that computer. Start off by learning what directory you’re
in. To do this, type the following:

pwd

which stands for “print working directory.” It asks the
computer to list the name and pathname of the directory
in which you’re currently working. You’ll see that many
Unix commands are very terse, so you have to type less.
The downside of this is that it makes them harder to
remember. The server will respond with a directory path,
such as:

/home/igoe

This is the home directory for your account. On many
web servers, this directory contains a subdirectory called
public_html or www, which is where your web files belong.
Files that you place in your home directory (that is, outside
or www or public_html) can’t be seen by web visitors.

NOTE: You should check with your web host to learn how the files

and directories in your home directory are set up.

To find out what files are in a given directory, use the list
(ls) command, like so:

ls –l .

NOTE: The dot is shorthand for “the current working directory.”

Similarly, a double dot is shorthand for the directory (the parent

directory) that contains the current directory.

The –l means “list long.” You’ll get a response like this:

total 44

drwxr-xr-x 13 igoe users 4096 Apr 14 11:42 public_html

drwxr-xr-x 3 igoe users 4096 Nov 25 2005 share

This is a list of all the files and subdirectories of the
current working directories, and their attributes. The first
column lists who’s got permissions to do what (read,
modify, or execute/run a file). The second lists how many
links there are to that file elsewhere on the system; it’s not
something you’ll have much need for, most of the time.
The third column tells you who owns it, and the fourth tells
you the group (a collection of users) the file belongs to.
The fifth lists its size, and the sixth lists the date it was last
modified. The final column lists the filename.

In a Unix environment, all files whose names begin with a
dot are invisible. Some files, like access-control files that
you’ll see later in the book, need to be invisible. You can get
a list of all the files, including the invisible ones, using the
–a modifier for ls, this way:

ls -la

To move around from one directory to another, there’s a
“change directory” command, cd. To get into the public_
html directory, for example, type:

cd public_html

To go back up one level in the directory structure, type:

cd ..

To return to your home directory, use the ~ symbol, which
is shorthand for your home directory:

cd ~

If you type cd on a line by itself, it also takes you to your
home directory.

If you wanted to go into a subdirectory of a directory,
for example the cgi-bin directory inside the public_html
directory, you’d type cd public_html/cgi-bin. You can type
the absolute path from the main directory of the server
(called the root) by placing a / at the beginning of the file’s
pathname. Any other file pathname is called a relative path.

To make a new directory, type:

mkdir directoryname

Using the Command Line

MTT_Chapter1.indd Sec1:28MTT_Chapter1.indd Sec1:28 8/23/07 2:22:34 PM8/23/07 2:22:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 29

This command will make a new directory in the current
working directory. If you then use ls -l to see a list of files
in the working directory, you’ll see a new line with the new
directory. If you then type cd directoryname to switch to
the new directory and ls –la to see all of its contents, you’ll
see only two listings:

drwxr-xr-x 2 tqi6023 users 4096 Feb 17 10:19 .

drwxr-xr-x 4 tqi6023 users 4096 Feb 17 10:19 ..

The first file, . , is a reference to this directory itself. The
second, .. , is a reference to the directory that contains
it. Those two references will exist as long as the directory
exists. You can’t change them.

To remove a directory, type:

rmdir directoryname

You can remove only empty directories, so make sure that
you’ve deleted all the files in a directory before you remove
it. rmdir won’t ask you if you’re sure before it deletes your
directory, though, so be careful. Don’t remove any direc-
tories or files that you didn’t make yourself until you know
your way around.

Controlling Access to Files
Type ls –l . to get a list of files in your current directory
and take a closer look at the permissions on the files.
For example, a file marked drwx------ means that it’s a
directory, and that it’s readable, writable, and executable
by the system user that created the directory (also known
as the owner of the file). Or take the file marked -rw-rw-
rw. The – at the beginning means it’s a regular file, not a
directory, and that the owner, the group of users that the
file belongs to (usually, this is the group that the owner is a
member of), and everyone else who accesses the system
can read and write to this file. The first rw- refers to the
owner, the second refers to the group, and the third refers
to the rest of the world. If you're the owner of a file, you
can change its permissions using the chmod command:

chmod go –w filename

The options following chmod refer to which users you want
to affect. In the preceding example, you’re removing write
permission (-w) for the group (g) that the file belongs
to, and for all others (o) besides the owner of the file. To
restore write permissions for the group and others, and to
also give them execute permission, you’d type:

chmod go +wx filename

A combination of u for user, g for group, and o for others,
and a combination of + and – and r for read, w for write,
and x for execute gives you the capability to change
permissions on your files for anyone on the system. Be
careful not to accidentally remove permissions from
yourself (the user). Also, get in the habit of not leaving files
accessible to the group and others unless you need to:
on large hosting providers, it’s not unusual for you to be
sharing a server with hundreds of other users!

Creating, Viewing, and Deleting Files
Two other command-line programs you’ll find useful are
nano and less. nano is a text editor. It’s very bare-bones,
and you may prefer to edit your files using your favorite
text editor on your own computer and then upload them
to your server. But for quick changes right on the server,
nano is great. To make a new file, type:

nano filename.txt

The nano editor will open up. Figure 1-4 shows what it
looked like after I typed in some text.

All the commands to work in nano are keyboard
commands you type using the Control key. For example, to
exit the program, type Control-X. The editor will then ask
you if you want to save, and prompt you for a filename.
The most common commands are listed along the bottom
of the screen.

While nano is for creating and editing files, less is for
reading them. less takes any file and displays it to the
screen one screenful at a time. To see the file you just
created in nano, for example, type:

less filename.txt

You’ll get a list of the file's contents, with a : prompt at
the bottom of the screen. Press the spacebar for the
next screenful. When you’ve read enough, type q to quit.
There’s not much to less, but it’s a handy way to read long
files. You can even send other commands through less
(or almost any command-line program) using the pipe (|)
operator. For example, try this:

ls –la . | less

MTT_Chapter1.indd Sec1:29MTT_Chapter1.indd Sec1:29 8/23/07 2:22:55 PM8/23/07 2:22:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

30 MAKING THINGS TALK

Once you’ve created a file, you can delete it using the rm
command, like this:

rm filename

Like rmdir, rm won’t ask you if you’re sure before it deletes
your file, so use it carefully.

There are many other commands available in the Unix
command shell, but these will suffice to get you started
for now. For more information, type help at the command
prompt to get a list of commonly used commands. For
any command, you can get its user manual by typing man
commandname. For more on getting around Unix and
Linux systems using the command line, see Learning the
Unix Operating System by Jerry Peek, John Strang, and
Grace Todino-Gonguet. When you’re ready to close the
connection to your server, type: logout

PHP
The server programs in this book are mostly in PHP. PHP
is one of the most common scripting languages for appli-
cations that run on the web server (server-side scripts).
Server-side scripts are programs that allow you to do
more with a web server than just serve fixed pages of text
or HTML. They allow you to access databases through a
browser, save data from a web session to a text file, send
mail from a browser, and more. You’ll need a web hosting
account with an Internet service provider for most of the
projects in this book, and it’s likely that your host already
provides access to PHP. If not, talk to your system admin-
istrator to see whether it can be installed.

To get started with PHP, you’ll need to make a remote
connection to your web hosting account using ssh as you
did in the last section. Some of the more basic web hosts
don’t allow ssh connections, so check with yours to see
whether they do (and if yours doesn’t, look around for
an inexpensive hosting company that does; it will be well
worth it for the flexibility of working from the command
line). Once you’re connected, type: php -v

You should get a reply like this:

PHP 4.3.9 (cgi) (built: Nov 4 2005 11:49:43)

Copyright (c) 1997-2004 The PHP Group

Zend Engine v1.3.0, Copyright (c) 1998-2004 Zend

Technologies

This tells what version of PHP is installed on your server.
The code in this book was written using PHP4, so as long
as you’re running that version or later, you’ll be fine. PHP
makes it easy to write web pages that can display results
from databases, send messages to other servers, send
email, and more.

Most of the time, you won’t be executing your PHP scripts
directly from the command line. Instead, you’ll be calling
the web server application on your server, most likely a
program called Apache, and asking it for a file (this is all
accomplished simply by opening a web browser, typing
in the address of a document on your web server, and
pressing Enter — just like visiting any other web page). If
the file you ask for is a PHP script, the web server applica-
tion will look for your file and execute it. It’ll then send a
message back to you with the results.

Figure 1-4
The nano text editor.

MTT_Chapter1.indd Sec1:30MTT_Chapter1.indd Sec1:30 8/31/07 10:53:51 AM8/31/07 10:53:51 AM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 31

For more on this, see Chapter 3. For now, let’s get a
simple PHP program or two working. Here’s your first
PHP program. Open your favorite text editor, type this in,
and save it on the server with the name hello.php in your
public_html directory. (Your web pages may be stored in a
different directory, such as www or web/public.)

<?php

echo "<html><head></head><body>\n";

echo "hello world!\n";

echo "</body></html>\n";

?>

Now, back at the command line, type the following to see
the results:

php hello.php

You should get the following response:

<html><head></head><body>

hello world!

</body></html>

Now try opening this file in a browser. To see this program
in action, open a web browser and navigate to the address
of this file on your website. Because you saved it in public_
html, the address is http://www.example.com/hello.php
(replace www.example.com with your web site and any
additional path info needed to access your home files,
such as http://tigoe.net/~tigoe/hello.php). You should get
a web page like the one in Figure 1-5.

Figure 1-5
The results of your first PHP script,
in a browser.

If it still doesn’t work, your web server may not be configured
or PHP. Another possibility is that your web server uses a
different extension for php scripts, such as .php4. Consult
with your web hosting provider for more information.

You may have noticed that the program is actually printing
out HTML text. PHP was made to be combined with HTML.
In fact, you can even embed PHP in HTML pages, by using
the <? and ?> tags that start and end every PHP script. If
you get an error when you try to open your PHP script in
a browser, ask your system administrator if there are any
requirements as to which directories PHP scripts need to
be in on your server, or on the file permissions for your
PHP scripts.

If you see the PHP source code instead of what’s

shown in Figure 1-5, you may have opened up the PHP script

as a local file (make sure your web browser’s location bar

says http:// instead of file://).

!

MTT_Chapter1.indd Sec1:31MTT_Chapter1.indd Sec1:31 8/23/07 2:23:44 PM8/23/07 2:23:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

32 MAKING THINGS TALK

Here’s a slightly more complex PHP script. Save it to your
server in the public_html directory as time.php:

<?php

/*

 Date printer

 Language: PHP

 Prints the date and time in an HTML page.

*/

// Get the date, and format it:

$date = date("Y-m-d h:i:s\t");

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

echo "hello world!
\n";

// Include the date:

echo "Today’s date: $date
\n";

// finish the HTML:

echo "</body></html>\n";

?>

To see it in action, type http://www.example.com/time.
php into your browser. You should get the date and time.
You can see this program uses a variable, $date, and calls
a built-in PHP function, date(), to fill the variable. You don’t
have to declare the types of your variables in PHP. Any
simple, or scalar, variable begins with a $ and can contain
an integer, a floating point number, or a string. PHP uses
the same C-style syntax as Processing, so you’ll see that
if-then statements, repeat loops, and comments all look
familiar.

For more on PHP, check out www.php.net, the main source
for PHP, where you’ll find some good tutorials on how to
use it. You can also check out Learning PHP 5 by David
Sklar (O'Reilly Media, Inc., 2004) for a more in-depth
treatment.

Serial Communication Tools
The remote access programs in the earlier section were
terminal emulation programs that gave you access to
remote computers through the Internet, but that’s not all
a terminal emulation program can do. Before TCP/IP was
ubiquitous as a way for computers to connect to networks,
connectivity was handled through modems attached to
the serial ports of computers. Back then, many users con-
nected to bulletin boards (BBSes) and used menu-based
systems to post messages on discussion boards, down-
load files, and send mail to other users of the same BBS.

Nowadays, serial ports are used mainly to connect to
some of peripheral devices of your computer. In micro-
controller programming, they’re used to exchange data
between the computer and the microcontroller. For the
projects in this book, you’ll find that using a terminal
program to connect to your serial ports is indispens-
able. There are several freeware and shareware terminal
programs available, but to keep it simple, stick with the
classics: PuTTY (version 0.59 or later) for Windows users,
and the GNU screen program running in a terminal window
for Mac OS X and Linux users.

Windows Serial Communication
To get started, you'll need to know the serial port name.
Click Start#Run (use the Search box on Vista), type
devmgmt.msc, and press Enter to launch Device Manager.
If you’ve got a serial device such as a Wiring or Arduino
board attached, you’ll see a listing for Ports (COM & LPT).
Under that listing, you’ll see all the available serial ports.
Each new Wiring or Arduino board you connect will get a
new name, such as COM5, COM6, COM7, and so forth.

Once you know the name of your serial port, open PuTTY.
In the Session category, set the Connection Type to Serial,
and enter the name of your port in the Serial Line box,
as shown in Figure 1-6. Then click the Serial category at
the end of the category list, and make sure that the serial
line matches your port name. Configure the serial line for
9600 baud, 8 databits, 1 stop bit, no parity, and no flow
control. Then click the Open button, and a serial window
will open. Anything you type in this window will be sent out
the serial port, and any data that comes in the serial port
will be displayed here as ASCII text.

NOTE: Unless your Arduino is running a program that communi-

cates over the serial port (and you’ll learn all about that shortly),

you won’t get any response yet.

Mac OS X and Linux Serial Communication
To get started with serial communication in Mac OS X or
Linux, open a terminal window and type:

ls /dev/tty.* # Mac OS X

ls /dev/tty* # Linux

This command will give you a list of available serial ports.
The names of the serial ports in Mac OS X and Linux are
more unique, but more cryptic than the COM1, COM2, and
so on that Windows uses. Pick your serial port and type:

screen portname datarate.

MTT_Chapter1.indd Sec1:32MTT_Chapter1.indd Sec1:32 8/23/07 2:24:08 PM8/23/07 2:24:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 33

Figure 1-6
Configuring a serial connection in PuTTY.

MTT_Chapter1.indd Sec1:33MTT_Chapter1.indd Sec1:33 8/23/07 2:24:32 PM8/23/07 2:24:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

34 MAKING THINGS TALK

Serial ports aren’t easily shared between applications.

In fact, only one application can have control of a serial

port at a time. If PuTTY or the screen program has the

serial port open to an Arduino module, for example, the

Arduino programming application can’t download new

code to the module. When an application tries to open

a serial port, it requests exclusive control of it either by

writing to a special file called a lock file or by asking the

operating system to lock the file on its behalf. When it

closes the serial port, it releases the lock on the serial

port. Sometimes when an application crashes while it’s

got a serial port open, it can forget to close the serial

port, with the result that no other application can open

the port. When this happens, the only thing you can

do to fix it is to restart the operating system, which

clears all the locks (alternatively, you could wait for the

operating system to figure out that the lock should be

released). To avoid this problem, make sure that you

close the serial port whenever you switch from one

application to another. Linux and Mac OS X users should

get in the habit of closing down screen with Ctrl-A Ctrl-\

every time, and Windows users should disconnect the

connection in PuTTY. Otherwise, you may find yourself

restarting your machine a lot.

Who’s Got the Port?

» opposite page bottom

Figure 1-8
The Arduino microcontroller modules.
CLOCKWISE FROM TOP LEFT: the original Arduino serial module;
the ArduinoUSB; the Arduino NG; the Arduino Bluetooth;
and finally, the Arduino Mini, center.

» opposite page top

Figure 1-7
Wiring Board, Arduino NG board, Arduino Mini.

For example, to open the serial port on an Arduino board
(discussed shortly) at 9600 bits per second, you might
type screen /dev/tty.usbserial-1B1 9600 on Mac OS X. On
Linux, the command might be screen /dev/ttyUSB0 9600.
The screen will be cleared, and any characters you type
will be sent out the serial port you opened. They won’t
show up on the screen, however. Any bytes received in
the serial port will be displayed in the window as charac-
ters. To close the serial port, type Control-A followed by
Control-\.

In the next section, you’ll use a serial communications
program to communicate with a microcontroller.

Hardware

Arduino and Wiring
The main microcontroller used in this book is the Arduino
module. Arduino is based on a similar module called
Wiring. You should be able to use Arduino or Wiring
interchangeably for the examples in this book. Both
modules are the children of the Processing programming
environment and the Atmel AVR family of microcontrollers.
In fact, you’ll find that the editors for Processing, Wiring,
and Arduino look almost identical. Both programming
environments are free and open source, available through
hardware.processing.org. You can buy the actual modules
from the original developers or from SparkFun at www.
sparkfun.com or from Make at store.makezine.com. If
you’re a hardcore hardware geek and like to make your
own printed circuit boards, you can download the plans
and make your own. I recommend the former, as it’s much
quicker (and more reliable, for most people). Figures 1-7
and 1-8 show Wiring and several variants of Arduino.

One of the best things about Wiring and Arduino is that
they are cross-platform. This is a rarity in microcontroller
development environments. They work well on Mac OS X,
Windows, and (with some effort) Linux.

Another good thing about these environments is that, like
Processing, they can be extended. Just as you can include
Java classes and methods in your Processing programs,
you can include C/C++ code, written in AVR-C, in your
Wiring and Arduino programs. For more on how to do this,
see the Wiring and Arduino websites.
X

MTT_Chapter1.indd Sec1:34MTT_Chapter1.indd Sec1:34 8/23/07 2:24:56 PM8/23/07 2:24:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 35

MTT_Chapter1.indd Sec1:35MTT_Chapter1.indd Sec1:35 8/23/07 2:25:27 PM8/23/07 2:25:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

36 MAKING THINGS TALK

Given the similarities between Wiring and Arduino, you’re

probably wondering which to choose. The programming

language is the same for both, and the programming envi-

ronments are virtually identical, so the major factors to

consider are price, size, and number of inputs and outputs.

Wiring is the larger of the two modules, and the more

expensive. It has more input and output connections and

some useful features such as hardware interrupt pins and

two hardware serial ports. Two serial ports can be handy

when you’re working on projects in this book, because you

can use one serial port to talk to your communications

device, and another to talk to the computer on which you’re

programming the microcontroller. There is a software serial

library for both Wiring and Arduino that allows you to use

any two I/O pins as a serial port. It’s more limited than a

hardware serial port, in that it can’t send and receive data as

quickly as a hardware serial port.

Wiring boards can be ordered online from www.sparkfun.

com or directly from www.wiring.org.co.

Arduino is the less expensive of the two modules, and the

smaller. It has fewer inputs and outputs than Wiring, and

only one hardware serial port. The Arduino developers have

made a few different Arduino boards. The original board

has an RS-232 serial interface, and all the components

are large enough that you can solder them by hand. It was

designed for people who want to make their own board

from scratch. The Arduino USB board is the default board.

It’s not as easy to assemble by hand, but most people buy

them pre-assembled. It has a USB interface. The Arduino

Bluetooth board is a variant on the USB board that has a

wireless interface for programming and serial communica-

tion. It’s the most expensive of the Arduino models to date,

but handy if you know you’re going to connect to it all the

time through Bluetooth. The Arduino Mini is a tiny version

of the Arduino, suitable for use on a breadboard. For people

familiar with the Parallax BASIC Stamp 2 or the NetMedia

BX-24, the Mini is a comfortable alternative. You can also

build an Arduino module on a solderless breadboard.

Arduino also features add-on modules called shields, which

allow you to add pre-assembled circuits to the main module.

At this writing, there are four shields on the market. PCB

Europe (pcb-europe.net/catalog) sells a board for controlling

DC motors, and a prototyping shield for making your own

circuits. SparkFun (www.sparkfun.com) sells a breadboard

prototyping shield along with the various Arduino boards.

Libelium (www.libelium.com) sells a ZigBee radio shield.

Wiring and Arduino Compared

A. Power B. Power Jumper C. Serial (via USB)

A

C
A

C

B

MTT_Chapter1.indd Sec1:36MTT_Chapter1.indd Sec1:36 8/23/07 2:30:20 PM8/23/07 2:30:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 37

Wiring users will find things similar enough to follow along
and do the same steps, substituting “Wiring” for “Arduino”
in the instructions that follow.

Once you’ve downloaded the Arduino software, you’ll
need to do a bit of configuring to get things ready for use.
Expand the downloaded file and you’ll get a directory
called arduino-0009 (if there is a newer version of the
software available, the number will be different). Move this
somewhere convenient: on a Mac, you might put it in your
Applications directory; on Windows, maybe in C:\Program
Files; on Linux, you might want to keep it in your home
directory or drop it into /usr/local. Now navigate to the
directory arduino-009/drivers subdirectory. In that directory,
you’ll find an installer for the FTDI USB serial driver
(not needed under Linux). This is the USB device on the
module that allows your computer to communicate with
the module via USB. Install it. Macintosh users will also
find a file in the arduino-0009 directory called macosx_setup.
command. This is the same as the macosx_setup.command
for Processing that was described earlier, so if you already
ran it to configure Processing, you won’t need to do it
again. If you haven’t, double-click the file and follow the
instructions that come up.

Now you’re ready to launch Arduino. Connect the module
to your USB port, and double-click the Arduino icon to
launch the software. The editor looks like Figure 1-12.

The environment is based on Processing, and has the
same New, Open, Save, and Export buttons on the main
toolbar. In Arduino and Wiring, the Run function is called
Verify. It compiles your program to check for any errors,
and the Export function is called Upload to Module
instead. It uploads your code to the microcontroller
module. There’s an additional button, the Serial Monitor,
that you can use to receive serial data from the module
while you’re debugging.
X

The projects in this book can be built with other micro-
controllers as well. Like all microcontrollers, the Arduino
and Wiring modules are just small computers. Like every
computer, they have inputs, outputs, a power supply, and
a communications port to connect to other devices. You
can power these modules either through a separate power
supply or through the USB connection to your computer.
The jumper shown in Figure 1-9 switches power from the
external supply to the USB supply. For this introduction,
you’ll power the module from the USB connection. For
many projects, you’ll want to disconnect them from the
computer once you’re finished programming them. To do
this, you’ll need to switch the power jumper to power the
board from the external power supply.

Both Wiring and Arduino have four power pins. On the
Wiring board, they’re labeled 5V, Gnd, GND and 9-15V. On
the Arduino, they’re labeled 5V, Gnd, Gnd, and 9V. In both
cases, the 5V connection outputs 5V relative to the two
ground pins. The 9V or 9-15V pin is connected directly to
the voltage input on the external power jack, so the output
voltage of that pin is equal to whatever your input voltage
is. You can also use this connection to connect these
modules directly to 9-15V battery power, if you set the
power jumper to external power.

Figure 1-10 shows the inputs and outputs for the Arduino,
the Arduino Mini, and the Wiring module. Each module has
the same standard features that most microcontrollers
have: analog inputs, digital inputs and outputs, and power
and ground connections. Some of the I/O pins can also
be used for serial communication. The Wiring and Arduino
boards also have a USB connector, a programming header
to allow you to reprogram the firmware (you’ll never do
that in this book), and a reset button. The Arduino Mini
does not have these features, but they can be added using
its companion USB-to-serial board. Figure 1-11 shows a
typical breadboard setup for the Mini. You’ll see these
diagrams repeated frequently, as they are the basis for all
of the microcontroller projects in the book.

Getting Started
Because the installation process for Wiring and Arduino is
almost identical, I’ll detail only the Arduino process here.

Arduino and Wiring are new to the market, and

updates to their software occur frequently. The notes in

this book refer to Arduino version 0009 and Wiring version

0012. By the time you read this, the specifics may be slightly

different, so check the Arduino and Wiring websites for the

latest details.

!

« opposite page

Figure 1-9
Arduino and Wiring modules. Note the jumper to switch power
from the USB connection to an external power supply.

MTT_Chapter1.indd Sec1:37MTT_Chapter1.indd Sec1:37 8/23/07 2:30:45 PM8/23/07 2:30:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

38 MAKING THINGS TALK

5V Gnd 9V

7 6 5 4 3 2 1 0

0 1 2 3 4 5

3 2 1 0 9 8
1 1 1 1

Analog in

Digital

Arduino

A
RE

F

1

G
N

D

TX RX

PW
M

2
PW

M
1

PW
M

0

ICSP

S1

PW
R

POWER

USB

Figure 1-10
Wiring, Arduino NG, and Arduino Mini pin diagrams.

MTT_Chapter1.indd Sec1:38MTT_Chapter1.indd Sec1:38 8/23/07 2:31:14 PM8/23/07 2:31:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 39

» bottom left

Figure 1-11
Typical wiring for an Arduino Mini.

Figure 1-12
The Arduino programming environment.
The Wiring environment looks identical.
to this, except for the color.

» bottom right

Figure 1-13
LED connected to pin 13 of an
Arduino board .

A. Mini TX Mini RX B. Ground C. Reset +5V

C
B

A

MTT_Chapter1.indd Sec1:39MTT_Chapter1.indd Sec1:39 8/31/07 10:54:37 AM8/31/07 10:54:37 AM

www.it-ebooks.info

http://www.it-ebooks.info/

40 MAKING THINGS TALK

/* Blink

 Language: Arduino/Wiring

 Blinks an LED attached to pin 13 every half second.

 Connections:

 Pin 13: + leg of an LED (- leg goes to ground)

*/

int LEDPin = 13;

void setup() {

 pinMode(LEDPin, OUTPUT); // set pin 13 to be an output

}

void loop() {

 digitalWrite(LEDPin, HIGH); // turn the LED on pin 13 on

 delay(500); // wait half a second

 digitalWrite(LEDPin, LOW); // turn the LED off

 delay(500); // wait half a second

}

Here’s your first program:

In order to see this run, you’ll need to connect
an LED from pin 13 of the board to ground

(GND) as shown in Figure 1-13. The positive (long) end of
the LED should go to 13, and the short end to ground.

Then type the code into the editor. Click on Tools#Serial
Port to choose the serial port of the Arduino module.
On the Mac or Linux, the serial port will have a name like
/dev/tty.usbserial-1B1 (the letters and numbers after the
dash will be slightly different each time you connect it).
On Windows, it should be COMx, where x is some number
(for example, COM5).

Next, select the model of AVR microcontroller on your
Arduino or Wiring module (you’ll have to inspect the board
to determine this). It will be either ATmega8 or ATmega168.
Make the appropriate choice from the Tools#Microcon-
troller (MCU) menu.

NOTE: On Windows, COM1–COM4 are generally reserved for

built-in serial ports, whether or not your computer has them.

Once you’ve selected the port and model, click Verify
to compile your code. When it’s compiled, you’ll get
a message at the bottom of the window saying Done
compiling. Then press the reset button on the module

 Try It

to reset it and prepare it to accept a new program. Then
click Upload. This will take several seconds. Once it’s done,
you’ll get a message saying Done uploading, and a confir-
mation message in the serial monitor window that says:

Atmel AVR ATmega168 is found.
Uploading: flash

NOTE: If your Arduino uses an ATmega8, it will report that instead.

You must make sure that you have configured the Arduino to use

the model of ATmega microcontroller on your board.

Press the reset button on the module again, and after
about five seconds, the LED you wired to the output pin
will begin to blink. That’s the microcontroller equivalent of
“Hello World!” (If you're using an Arduino Diecimila or later
model, you won't have to press the reset button when you
upload.)

NOTE: If it doesn't work, you might want to seek out some external

help. The Arduino (www.arduino.cc/cgi-bin/yabb2/YaBB.pl)

and Wiring (wiring.org.co/cgi-bin/yabb/YaBB.pl) forums are full

of helpful people who love to hack these sort of things.

MTT_Chapter1.indd Sec1:40MTT_Chapter1.indd Sec1:40 8/23/07 2:32:13 PM8/23/07 2:32:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 41

The USB serial port that’s associated with the Arduino

or Wiring module is actually a software driver that loads

every time you plug in the module. When you unplug,

the serial driver deactivates and the serial port will

disappear from the list of available ports. You might also

notice that the port name changes when you unplug

and plug in the module. On Windows machines, you may

get a new COM number. On Macs, you’ll get a different

alphanumeric code at the end of the port name.

Never unplug a USB serial device when you’ve got its

serial port open; you must exit the Wiring or Arduino

software environment before you unplug anything.

Otherwise, you’re sure to crash the application, and

possibly the whole operating system, depending on how

well-behaved the software driver is.

Where’s My Serial Port?

/*

 Simple Serial

 Language: Arduino/Wiring

 Listens for an incoming serial byte, adds one to the byte

 and sends the result back out serially.

 Also blinks an LED on pin 13 every half second.

 */

int LEDPin = 13; // you can use any digital I/O pin you want

int inByte = 0; // variable to hold incoming serial data

long blinkTimer = 0; // keeps track of how long since the LED

 // was last turned off

int blinkInterval = 1000; // a full second from on to off to on again

void setup() {

 pinMode(LEDPin, OUTPUT); // set pin 13 to be an output

 Serial.begin(9600); // configure the serial port for 9600 bps

 // data rate.

}

void loop() {

 // if there are any incoming serial bytes available to read:

 if (Serial.available() > 0) {

 // then read the first available byte:

 inByte = Serial.read();

 // and add one to it, then send the result out:

This next Arduino/Wiring program
listens for incoming serial data. It adds
one to whatever serial value it receives,
and sends the result back out. It also
blinks an LED on pin regularly, on the
same pin as the last example, to let you
know that it’s still working:

»

Serial Communication
One of the most frequent tasks you’ll use a microcon-
troller for in this book is to communicate serially with
another device, either to send sensor readings over a
network or to receive commands to control motors,
lights, or other outputs from the microcontroller. Regard-
less of what device you’re communicating with, the
commands you’ll use in your microcontroller program
will be the same. First you’ll configure the serial con-
nection for the right data rate. Then you’ll read bytes
in, write bytes out, or both, depending on what device
you’re talking to, and how the conversation is structured.

NOTE: If you’ve got experience with the Basic Stamp or PicBasic

Pro, you will find Arduino serial communications a bit different

than what you are used to. In PBasic and PicBasic Pro, the

serial pins and the data rate are defined each time you send a

message. In Wiring and Arduino, the serial pins are unchangeable,

and the data rate is set at the beginning of the program. This

way is a bit less flexible than the PBasic way, but there are some

advantages, as you’ll see shortly.

 Try It

MTT_Chapter1.indd Sec1:41MTT_Chapter1.indd Sec1:41 8/23/07 2:32:42 PM8/23/07 2:32:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

42 MAKING THINGS TALK

Continued from previous page.

 Serial.print(inByte+1, BYTE);

 }

 // Meanwhile, keep blinking the LED.

 // after a quarter of a second, turn the LED on:

 if (millis() - blinkTimer >= blinkInterval / 2) {

 digitalWrite(LEDPin, HIGH); // turn the LED on pin 13 on

 }

 // after a half a second, turn the LED off and reset the timer:

 if (millis() - blinkTimer >= blinkInterval) {

 digitalWrite(LEDPin, LOW); // turn the LED off

 blinkTimer = millis(); // reset the timer

 }

}

To send bytes from the computer to the micro-
controller module, first compile and upload this

program. Then click the Serial Monitor icon (the rightmost
icon on the toolbar). The screen will change to look like
Figure 1-14. Set the serial rate to 9600 baud.

Type any letter in the text entry box and press Enter or
click Send. The module will respond with the next letter
in sequence. For every character you type, the module
adds one to that character’s ASCII value, and sends back
the result. Terminal applications represent all bytes they
receive as ASCII.

Wiring Components to the Module
The Arduino and Wiring modules don’t have many sockets
for connections other than the I/O pins, so you’ll need to
keep a solderless breadboard handy to build subcircuits
for your sensors and actuators (output devices). Figure 1-15
shows a standard setup for connections between the two.

Specialty Devices
You’ll encounter some specialty devices as well, such
as the Lantronix Xport, WiPort, and Cobox Micro. The
Lantronix modules are serial-to-Ethernet modules. Their
main function is to connect devices with a serial communi-
cations interface (such as all microcontrollers) to Ethernet
networks. It’s possible to program your own serial-to-
Ethernet module directly on a microcontroller with a few
spare parts, but it’s a lot of work. The Lantronix modules
cost more, but they’re much more convenient. You’ll also
encounter serial-to-Bluetooth modules, serial-to-ZigBee

modules, RFID modules, and other microcontrollers
whose main job is to connect other devices. The details
on connecting these will be explained one by one as you
encounter them in the projects that follow.

Basic Circuits
There are two basic circuits that you’ll use a lot in this
book: digital input and analog input. If you’re familiar with
microcontroller development, you’re already familiar with
them. Any time you need to read a sensor value, you can
start with one of these two. Even if you’re using a custom
sensor in your final object, you can use these circuits as
placeholders, just to see any changing sensor values.

Digital input
A digital input to a microcontroller is nothing more than a
switch. The switch is connected to voltage and to a digital
input pin of the microcontroller. A high-value resistor (10
kilohms is good) connects the input pin to ground. This is
called a pull-down resistor. Other electronics tutorials may
connect the switch to ground and the resistor to voltage. In
that case, you’d call the resistor a pull-up resistor. Pull-up
and pull-down resistors provide a reference to power (pull-
up) and ground (pull-down) for digital input pins. When a
switch is wired as shown in Figure 1-16, closing the switch
sets the input pin high. Wired the other way: closing the
switch sets the input pin low.

The circuit in Figure 1-17 is called a voltage divider. The
variable resistor and the fixed resistor divide the voltage
between them. The ratio of the resistors’ values deter-

MTT_Chapter1.indd Sec1:42MTT_Chapter1.indd Sec1:42 8/23/07 2:33:03 PM8/23/07 2:33:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 43

Figure 1-14
The Serial monitor in Arduino.

Figure 1-15
Arduino connected to a breadboard. +5V and
ground run from the module to the long rows of
the board. This way, all sensors and actuators can
share the +5V and ground connections of the board.
Control or signal connections from each sensor
or actuator run to the appropriate I/O pins. In this
example, two pushbuttons are attached to digital
pins 2 and 3 as digital inputs.

MTT_Chapter1.indd Sec1:43MTT_Chapter1.indd Sec1:43 8/23/07 2:33:22 PM8/23/07 2:33:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

44 MAKING THINGS TALK

mines the voltage at the connection between them. If you
connect the analog-to-digital converter of a microcon-
troller to this point, you’ll see a changing voltage as the
variable resistor changes. You can use any kind of variable
resistor: photocells, thermistors, force-sensing resistors,
flex-sensing resistors, and more.

The potentiometer, shown in Figure 1-18, is a special type
of variable resistor. It’s a fixed resistor with a wiper that
slides along the conductive surface of the resistor. The
resistance changes between the wiper and both ends of
the resistor as you move the wiper. Basically, a poten-
tiometer (pot for short) is two variable resistors in one
package. If you connect the ends to voltage and ground,
you can read a changing voltage at the wiper.

Most of the circuits in this book will be shown on a bread-
board. By default, the two side rows on each side of the
board will be used for power and ground lines, typically
+5V for power. On most of the boards, you’ll notice wires
connecting each of the side rows to two of the top rows.
For some projects, the board will be powered from a Wiring
or Arduino module or USB power, so there will be no need
for a voltage regulator. For others, you will need one. I use
separate wires rather than connecting from one side to
the other directly, so that when I need a voltage regulator,
it can be added easily. Figure 1-19 shows a board with and
without a regulator.

There are many other circuits you’ll learn in the projects
that follow, but these are the staples of all the projects.
X

Figure 1-16
Digital input to a microcontroller.

Input voltage

To microcontroller
digital input

MTT_Chapter1.indd Sec1:44MTT_Chapter1.indd Sec1:44 8/23/07 2:33:45 PM8/23/07 2:33:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 45

Figure 1-17
Voltage divider used as analog input to a microcontroller.

Figure 1-18
Potentiometer used as analog input to a microcontroller.

Input voltage

To microcontroller
analog input

Variable resistor
(photocell, flex
sensor, etc.)

Fixed resistor

Input voltage

To microcontroller
analog inputPotentiometer

MTT_Chapter1.indd Sec1:45MTT_Chapter1.indd Sec1:45 8/23/07 2:34:14 PM8/23/07 2:34:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

46 MAKING THINGS TALK

Figure 1-19
Breadboard with a regulator, and without one.

You will run across different variations on many

of the modules and components used in this book. For

example, the Arduino module has at least five variations,

shown in Figure 1-8. The FTDI USB-to-serial module used in

later chapters has at least three variations. Even the voltage

regulators used in this book have different variations. Be

sure to check the data sheet on whatever component or

module you’re using, as your version may vary from what

is shown here.

!

MTT_Chapter1.indd Sec1:46MTT_Chapter1.indd Sec1:46 8/23/07 2:35:15 PM8/23/07 2:35:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE TOOLS 47

It Ends with the Stuff You Touch
Though most of this book is about the fascinating world of making things talk to each
other, it’s important to remember that you’re most likely building your project for the
enjoyment of someone who doesn’t care about the technical details under the hood.

Even if you’re building it only for yourself, you don’t want
to have to fix it all the time. All that matters to the person
using your system are the parts that she can see, hear,
and touch. All the inner details are irrelevant if the physical
interface doesn’t work. So don’t spend all of your time
focusing on the communication between devices and
leave out the communication with people. In fact, it’s best
to think about the specifics of what the person does and
sees first.

There are a number of details that are easy to overlook,
but are very important to humans. For example, many
network communications can take several seconds or
more. In a screen-based operating system, progress bars
acknowledge a person’s input and keep her informed as
to the progress of the task. Physical objects don’t have
progress bars, but they should incorporate some indicator
as to what they’re doing — perhaps as simple as an LED
that gently pulses while the network transfer’s happening,
or a tune that plays.

Find your own solution, but make sure you give some
physical indication as to the invisible activities of your
objects.

Don’t forget the basic elements, either. Build in a power
switch or a reset button. Don’t forget a power indicator.
Design the shape of the object so that it’s clear which
end is up. Make your physical controls clearly visible and
easy to operate. Plan the sequence of actions you expect
a person to take, and lay out the physical affordances for
those actions in a sensible sequence. You can’t tell people
what to think about your object — you can only show them
how to interact with it through its physical form. There
may be times when you violate convention in the way you
design your controls, perhaps in order to create a chal-
lenging game, or to make the object seem more “magical,”
but make sure you’re doing it intentionally. Always think
about the participant’s expectations first.

By including the person’s behavior in your system planning,
you solve some problems that are computationally difficult,
but easy for human intelligence to solve. Ultimately, the
best reason to make things talk to each other is to give
people more reasons to talk to each other.
X

MTT_Chapter1.indd Sec1:47MTT_Chapter1.indd Sec1:47 8/31/07 10:55:31 AM8/31/07 10:55:31 AM

www.it-ebooks.info

http://www.it-ebooks.info/

48 MAKING THINGS TALK

MTT_Chapter2.indd 48MTT_Chapter2.indd 48 8/24/07 1:38:51 PM8/24/07 1:38:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

The Simplest Network
The most basic network is a one-to-one connection between two

objects. This chapter covers the details of two-way communication,

beginning with the characteristics that have to be agreed upon in

advance. You’ll learn about some of the logistical elements of network

communications: data protocols, flow control, and addressing. You’ll

practice all of this by building a simple example: one-to-one serial

communication between a microcontroller and a personal computer.

Once you’ve got that working, you’ll replace the cable connecting the

two with Bluetooth radios and learn about modem communications.

2
MAKE: PROJECTS

Joo Youn Paek’s Zipper Orchestra (2006) is a musical installation that lets you control video and music using
zippers. The zippers are wired to a microcontroller using conductive thread, and the microcontroller communicates
serially with a multimedia computer that drives the playback of the zipper movies and sounds as you zip.
Photo courtesy of Joo Youn Paek.

MTT_Chapter2.indd 49MTT_Chapter2.indd 49 8/24/07 1:39:30 PM8/24/07 1:39:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

50 MAKING THINGS TALK

Layers of Agreement
Before you can get things to talk to each other, you have to lay some ground rules for
the communication between them. These agreements can be broken down into five
layers, each of which builds on the previous ones:

Physical
How are the physical inputs and outputs of each device
connected to the other? How many connections between
the two devices do you need to get messages across?

Electrical
What voltage levels will you send to represent the bits of
your data?

Logical
Does an increase in voltage level represent a zero or a
one? This is one of the most common sources of problems
in the projects that follow.

Data
What’s the timing of the bits? Are the bits read in groups
of 8, 9, or 10 bits? More? Are there bits at the beginning or
end of each group to punctuate the groups?

Application
How are the groups of bits arranged into messages? What
is the order in which messages have to be exchanged in
order to get something done?

This is a simplified version of a common model for
thinking about networking called the Open Systems Inter-
connect (OSI) model. Networking issues are never really
this neatly separated, but if you keep these elements
distinct in your mind, troubleshooting any connection
will be much easier. Thinking in layers like this gives you
somewhere to start looking for the problem, and a way to
eliminate parts of the system that are not the problem.

•

•

•

•

•

No matter how complex the network gets, never forget
that the communication between electronic devices is all
about pulses of energy. Serial communication involves
changing the voltage of an electrical connection between
the sender and receiver at a specific rate. Each interval
of time represents one bit of information. The sender
changes the voltage to send a value of 0 or 1 for the bit in
question, and the receiver reads whether the voltage is
high or low. There are two methods (see Figure 1-1) that
sender and receiver can use to agree on the rate at which
bits are sent. In asynchronous serial communication, the
rate is agreed upon mutually and clocked independently
by sender and receiver. In synchronous serial communica-
tion, it’s controlled by the sender, who pulses a separate
connection high and low at a steady rate. Synchronous
serial communication is used mostly for communication
between integrated circuits (such as the communication
between a computer processor and its memory chips).
The rest of this chapter concentrates only on asynchro-
nous serial communication, because that’s the form of
serial communication underlying the networks in the rest
of the book.
X

MTT_Chapter2.indd 50MTT_Chapter2.indd 50 8/24/07 1:39:50 PM8/24/07 1:39:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 51

Figure 2-1
Types of serial communication.

Figure 2-2
Physical connections: USB,
RS-232 serial.

Asynchronous Serial Communication

Synchronous Serial Communication

Sender

Master

Receiver

Slave

Data goes this way

Data goes this way

Data goes this way

Data goes this way

Clock signal goes this way

Clock pulses
5V

0V

RX

TX

Ground

Chip Select

Master out,
slave in

Master out,
slave out

Clock

TX

RX

Ground

CS

MOSI

MISO

CLK

USB Type A RS-232

1 – +5V
2 – Data -
3 – Data +
4– Ground

2 – PC Receive
3 – PC Ttransmit
5 – PC Ground

5 4 3 2 1

9 8 7 6

1 2 3 4

USB Type B

2 1

3 4

MTT_Chapter2.indd 51MTT_Chapter2.indd 51 8/24/07 1:40:08 PM8/24/07 1:40:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

52 MAKING THINGS TALK

First, there’s the protocol that the microcontroller speaks,
called TTL serial:

Physical layer
The Arduino module receives data on digital I/O pin 0,
and sends it out on pin 1.

Electrical layer
It uses pulses of 5 volts or 0 volts to represent bits.

Logical layer
A 5-volt signal represents the value 1, and a 0-volt signal
represents the value 0.

Data layer
Data is sent at 9600 bits per second. Each byte contains
8 bits, preceded by a start bit and followed by a stop bit
(which you never have to bother with).

Application layer
At the application layer, you sent one byte from the PC to
the Arduino and processed it, and the Arduino sent back
one byte to the PC.

But wait, that’s not all that’s involved. The 5-volt and 0-volt
pulses didn’t go directly to the PC. First they went to a
serial-to-USB chip on the board that communicates using
TTL serial on one side, and USB on the other.

Second, there's USB, the Universal Serial Bus protocol.
It differs from TTL serial in many ways:

Physical layer
USB sends data on two wires, called Data+ and Data–.
Every USB connector also has a 5-volt power supply line
and a ground line.

•

•

•

•

•

•

Making the Connection: The Lower Layers
You’re already familiar with one example of serial communication, between a microcon-
troller and a personal computer. In Chapter 1, you connected an Arduino module to a
personal computer through the computer’s USB port. If you’re working with a different
microcontroller such as Parallax’ Basic Stamp, you probably made the connection using
a serial-to-USB converter, or used an older PC that still had a 9-pin serial port. That
simple connection involved two serial protocols.

Electrical layer
The signal on Data– is always the polar opposite of what’s
on Data+, so that the sum of their voltages is always zero.
Because of this, a receiver can check for electrical errors
by adding the two data voltages together. If the sum isn’t
zero, the receiver can disregard the signal at that point.

Logical layer
A +5-volt signal (on Data+) or –5-volt signal (on Data–)
represents the value 1, and a 0-volt signal represents the
value 0.

Data Layer
The data layer of USB is more complex than TTL serial.
Data can be sent at up to 480 megabits per second. Each
byte contains 8 bits, preceded by a start bit and followed
by a stop bit. Many USB devices can share the same pair
of wires, sending signals at times dictated by the control-
ling PC. This arrangement is called a bus (the B in USB). As
there can be many devices on the same bus, the operating
system gives each one its own unique address, and sees
to it that the bytes from each device on the bus go to the
applications that need them.

Application layer
At the application layer, the USB-to-serial converter on
the Wiring and Arduino boards sends a few bytes to the
operating system to identify itself. The operating system
then associates the hardware with a library of driver
software that other programs can use to access data from
the device.

All that control is transparent to you, because the computer’s
USB controller only passes you the bytes you need. The
USB chip on your Arduino board presents itself to the
operating system as a serial port, and sends data through
the USB connection at the rate you choose (9600 bits per

•

•

•

•

MTT_Chapter2.indd 52MTT_Chapter2.indd 52 8/31/07 10:56:49 AM8/31/07 10:56:49 AM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 53

second, in the example in Chapter 1).

One more protocol: if you use a BASIC Stamp or another
microcontroller with a non-USB serial interface, you
probably have a 9-pin serial connector connecting your
microcontroller to your PC, or to a USB-to-serial adaptor.
This connector, called a DB-9 or D-sub-9 connector, is a
standard connector for another serial protocol, RS-232.
RS-232 was the main serial protocol for computer serial
connections before USB, and it’s still quite common on
many computer peripheral devices:

Physical layer
A computer with an RS-232 serial port receives data on
pin 2, and sends it out on pin 3. Pin 5 is the ground pin.

Electrical layer
RS-232 sends data at two levels: 5 to 12 volts, and –5 to
–12 volts.

Logical layer
A 5 to 12 volt signal represents the value 0, and a –5 to –12
volt signal represents the value 1.

•

•

•

One of the great things about microcontrollers is that

because they’re cheap, you can use many of them.

For example, in a project with many sensors, you can either

write a complex program on the microcontroller to read

them all, or you can give each sensor its own microcon-

troller. If you’re trying to get all the information from those

sensors into a personal computer, you might think it’s easier

to use one microcontroller, because you’ve got a limited

number of serial ports. Thanks to USB, however, that’s not

the case. If your microcontroller speaks USB, or if you’ve got

a USB-to-serial adaptor for it, you can just plug it in and it

will show up in the operating system as another serial port.

For example, if you plug three Arduino modules into the

same computer through a USB hub, you’ll get three new

serial ports, named something like this on Mac OS X:

/dev/tty.usbserial-5B21

/dev/tty.usbserial-5B22

/dev/tty.usbserial-5B24

In Windows, you’d see something like COM8, COM9, COM10.

If you’re using a microcontroller that doesn’t have its own

USB-to-serial converter, you can buy one for about $15

to $40 — Keyspan (www.keyspan.com) and IOGear (www.

iogear.com) sell decent models. You can get a USB-to-TTL-

serial cable from FTDI for about $20 (part number TTL-232R,

also available from Mouser.com), and SparkFun sells a bread-

board USB-to-serial module for about $15 (part number BOB-

00718). The SparkFun module is shown in a circuit in Figure

2-4. The other converters are self-explanatory.

Like the MAX3323 circuit, this circuit is a handy testing

circuit for some of the radio and Ethernet modules you’ll see

in the chapters that follow that have TTL serial interfaces. In

fact, it’s the default circuit for interfacing these devices to a

computer in this book. If your computer doesn’t have USB,

you can use the MAX3323 circuit instead. You can also use

the MAX3323 circuit in conjunction with the commercially

available USB-to-serial adaptors mentioned above.

USB: An Endless Source of Serial Ports

NOTE: Note that this logic is the reverse of TTL serial. It’s referred

to as inverted logic. Most microcontrollers have the capacity to

send serial data using inverted or true logic.

Data layer
This is the same as TTL’s, 8 bits per byte with a start and
stop bit.

So why is it possible to connect some microcontrollers,
like the BASIC Stamp or the BX-24, directly to RS-232
serial ports? It is because the voltage levels of TTL serial,
0 to 5 volts, are just barely enough to register in the
higher RS-232 levels, and because you can invert the
bits when sending or receiving from the microcontroller.
RS-232 doesn’t carry any of the addressing overhead of
USB, so it’s an easier protocol to deal with. Unfortunately,
it’s becoming obsolete, so USB-to-serial converters are
increasingly common tools for microcontroller program-
mers. Because Wiring and Arduino both have an integrated
USB-to-serial converter, you can just plug them into a
USB port.

•

MTT_Chapter2.indd 53MTT_Chapter2.indd 53 8/31/07 10:57:19 AM8/31/07 10:57:19 AM

www.it-ebooks.info

http://www.it-ebooks.info/

54 MAKING THINGS TALK

Figure 2-3
The MAX3323 chip. This circuit
is really handy when you need
to get any 3.3 to 5-volt TTL
device to talk to a personal
computer with an RS-232 serial
port. This will also work for the
MAX232.

When you’re lucky, you never have to think about this kind
of protocol mixing, and you can just use converters to do
the job for you. You’re not always lucky, though, so it’s
worth knowing a little about what’s happening behind the
scenes. For example, one of the most common problems
in getting a serial device to communicate with a personal
computer is converting the device’s serial signals to USB
or RS-232. A handy chip that does the TTL-to-RS-232
conversion for you is the MAX3323, available from Maxim
Technologies (www.maxim-ic.com). It takes in RS-232
serial, and spits out 3.3V to 5-volt TTL serial, and vice
versa. If you power it from a 3.3V source, you get 3.3V TTL
serial output, and if you power it from 5V, you get 5V TTL
serial output. Figure 2-3 shows the typical schematic for a
MAX232 and a MAX3323.

If you’ve done a lot of serial projects, you may know the
MAX232, which preceded the MAX3323. In fact, the
MAX232 was so common that the name came to be
synonymous for all TTL-to-RS-232 converters, whether
Maxim made them or not. The MAX232 worked only at
5 volts, but the MAX3323 works at 3.3 to 5 volts. Because
3.3 volts is beginning to replace 5 volts as a standard supply
voltage for electronic parts, it’s handy to use a chip that
can do both.
X

MTT_Chapter2.indd 54MTT_Chapter2.indd 54 8/31/07 10:58:00 AM8/31/07 10:58:00 AM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 55

Figure 2-4
SparkFun’s FTDI-to-serial module on a breadboard.

MTT_Chapter2.indd 55MTT_Chapter2.indd 55 8/31/07 10:58:30 AM8/31/07 10:58:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

56 MAKING THINGS TALK

Saying Something: The Application Layer
Now that you’ve got a sense of how to make the connections between devices,
let’s build a couple of projects to understand how to organize the data sent in order
to get things done.

Monski pong
In this example, you’ll make a replacement
for a mouse. If you think about the mouse
as a data object, it looks like Figure 2-5.

MATERIALS

2 flex sensor resistors Images SI, Inc, (www.
imagesco.com) part number FLX-01, or Jameco
(www.jameco.com) part number 150551
2 momentary switches Available from any
electronics retailer. Pick the one that makes you
the happiest. Jameco part number 174414 is shown
here.
4 10-kilohm resistors Available at many retailers,
for example Digi-Key (www.digikey.com)
part number 10K-QBK-ND, and many others.
1 solderless breadboard For instance, Digi-Key
part number 438-1045-ND, Jameco part number
20601
1 Arduino microcontroller module
1 personal computer
All necessary converters to communicate
serially from microcontroller to computer For
the Arduino and Wiring modules, all you’ll need
is a USB cable. For other microcontrollers, you’ll
probably need a USB-to-serial converter and a
connector to connect to your breadboard. Whatever
you’ve used in the past for serial communication
will work for this project.
1 small pink monkey aka Monski. You may want
a second one for a two-player game.

»

»

»

»

»
»
»

»

Project 1

What the computer does with the mouse’s data depends
on the application. For this application, you’ll make a small
pink monkey play pong by waving his arms. He’ll also have
the capability to reset the game by pressing a button, and
to serve the ball by pressing a second button.

Connect long wires to the flex sensors, so that you can sew
the sensors into the arms of the monkey without having
the microcontroller in his lap. A couple of feet should be
fine for testing.

Connect long wires to the buttons as well, and mount
them in a piece of scrap foam-core or cardboard until
you’ve decided on a final housing for the electronics. Label
the buttons “Reset” and “Serve.” Wire the sensors to the
microcontroller as shown in Figure 2-6.

Output – 4 values:
– x coordinate, 10 bits
– y coordinate, 10 bits
– button 1, 1 bit
– button 2, 1 bit

Input: y movement

Input:
x movement

1 2
Input buttons

Figure 2-5
The mouse as a
data object.

MTT_Chapter2.indd 56MTT_Chapter2.indd 56 8/24/07 1:52:13 PM8/24/07 1:52:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 57

Figure 2-6
The Monski pong circuit. Sensors are
shown here with short wires so that
the image is clear. You should attach
longer wires to your sensors, though.

MTT_Chapter2.indd 57MTT_Chapter2.indd 57 8/24/07 1:53:18 PM8/24/07 1:53:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

58 MAKING THINGS TALK

Figure 2-7
A stable support for the sensors is essential if you want good
readings from them. Once you know your support works,
move it inside the monkey and test it.

Cut a small slit in each of the monkey’s armpits to insert
the sensors. If you don’t want to damage the monkey, you
can use tie-wraps or tape to secure the sensors to the
outsides of his arms. The sensors need to be positioned
so that their movement is consistent, so you should add
some sort of support that keeps them in position relative
to each other. A piece of flexible modeling wire will do the
job nicely. Make sure that both the sensors are facing
the same direction, because flex sensors give different
readings when flexed one direction than they do when
flexed the other direction. Insulate the connections well,
because the foam inside the monkey might generate
considerable static electricity when he’s moving. Hot glue
will do the job nicely.

Make sure that the sensors and electrical connections
are stable and secure before you start to work on code.
Debugging is much harder if the electrical connections
aren’t consistent.
X

MTT_Chapter2.indd 58MTT_Chapter2.indd 58 8/24/07 1:53:40 PM8/24/07 1:53:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 59

/*

 Sensor Reader

 Language: Wiring/Arduino

 Reads two analog inputs and two digital inputs and outputs

 their values.

 Connections:

 analog sensors on analog input pins 0 and 1

 switches on digital I/O pins 2 and 3

 */

int leftSensor = 0; // analog input for the left arm

int rightSensor = 1; // analog input for the right arm

int resetButton = 2; // digital input for the reset button

int serveButton = 3; // digital input for the serve button

int leftValue = 0; // reading from the left arm

int rightValue = 0; // reading from the right arm

int reset = 0; // reading from the reset button

int serve = 0; // reading from the serve button

void setup() {

 // configure the serial connection:

 Serial.begin(9600);

 // configure the digital inputs:

 pinMode(resetButton, INPUT);

 pinMode(serveButton, INPUT);

}

void loop() {

 // read the analog sensors:

 leftValue = analogRead(leftSensor);

 rightValue = analogRead(rightSensor);

 // read the digital sensors:

 reset = digitalRead(resetButton);

 serve = digitalRead(serveButton);

 // print the results:

 Serial.print(leftValue, DEC);

 Serial.print(",");

 Serial.print(rightValue, DEC);

 Serial.print(",");

 Serial.print(reset, DEC);

 Serial.print(",");

 // print the last sensor value with a println() so that

 // each set of four readings prints on a line by itself:

 Serial.println(serve, DEC);

}

Now use the following
code on the Arduino

module to confirm that the sensors
are working:

If you open the Serial Monitor in
Arduino, or your preferred serial
terminal application at 9600 bits per
second as you did in Chapter 1, you’ll
see a stream of results like this:

284,284,1,1,

285,283,1,1,

286,284,1,1,

289,283,1,1,

 Test It

Before you go to the next

section, where you’ll be writing some

Processing code to interpret the

output of this program, be sure to

undo this change.

!

MTT_Chapter2.indd 59MTT_Chapter2.indd 59 8/24/07 1:54:10 PM8/24/07 1:54:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

60 MAKING THINGS TALK

What’s going on? The original example displays
the values of the sensors as their ASCII code

numbers, while this modification sends out the raw binary
values. The Serial Monitor and the terminal programs
assume that every byte they receive is an ASCII character,
so they display the ASCII characters corresponding to the
raw binary values in the second example. For example,
the values 13 and 10 correspond to the ASCII return and
newline characters, respectively, and remove the need
for the println in the original example. The value 44 cor-
responds to the ASCII comma character. Those are the
bytes you’re sending in between the sensor readings
in the second example. The sensor variables (leftValue,
rightValue, reset, and serve) are the source of the mystery

ASCII is the American Symbolic Code for Information

Interchange. It’s a scheme that was created in 1967 by the

American Standards Association (now ANSI) as a means

for all computers, regardless of their operating systems, to

be able to exchange text-based messages. In ASCII, each

letter, numeral, or punctuation mark in the Roman alphabet

is assigned a number. Anything an end user types is then

converted to a string of numbers, transmitted, then recon-

verted on the other end. In addition to letters, numbers, and

punctuation marks, certain page-formatting characters, like

the linefeed and carriage return (ASCII 10 and 13, respec-

tively) have ASCII values. That way, not only the text of a

message, but also the display format of the message, could

be transmitted. These are referred to as control characters.

They take up first 32 values in the ASCII set (ASCII 0 – 31).

All of the numbers, letters, punctuation, and control char-

acters are covered by 128 possible values. ASCII is too

limited to display non-English characters, however, and its

few control characters don’t offer enough control in the age

of graphic user interfaces. Unicode, a more comprehensive

code that’s a superset of ASCII, has replaced ASCII as the

standard for text interchange, and markup languages like

PostScript and HTML have replaced ASCII’s page formatting,

but the original code still lingers on.

What’s ASCII?

 // print the results:

 Serial.print(leftValue, BYTE);

 Serial.print(44, BYTE);

 Serial.print(rightValue, BYTE);

 Serial.print(44, BYTE);

 Serial.print(reset, BYTE);

 Serial.print(44, BYTE);

 Serial.print(serve, BYTE);

 Serial.print(13, BYTE);

 Serial.print(10, BYTE);

Just as you programmed it, each
value is separated by a comma, and
each set of readings is on a line by
itself. Try replacing the part of your
code that prints the results with this:

When you view the results in the serial
monitor or terminal, you’ll get some-
thing that looks like garbage, like this:

.,P,,,

(,F,,,

(,A,,,

),I,,,

8

characters. In the third line of the output, when the second
sensor’s value is 65, you see the character A, because the
ASCII character A has the value 65. For a complete list
of the ASCII values corresponding to each character, see
www.asciitable.com.

Which way should you format your sensor values? As
raw binary, or as ASCII? It depends on the capabilities of
the system that’s receiving the data, and of those that
are passing it through. When you’re writing software on
a personal computer, it’s often easier for your software
to interpret raw values. However, many of the network
protocols you’ll use in this book are ASCII-based. In
addition, ASCII is readable by humans, so you may find it

MTT_Chapter2.indd 60MTT_Chapter2.indd 60 8/24/07 1:54:31 PM8/24/07 1:54:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 61

Open the Processing application and
enter the following code:

/*

 Serial String Reader

 Language: Processing

 reads in a string of characters from a serial port

 until it gets a linefeed (ASCII 10).

 Then splits the string into sections separated by commas.

 Then converts the sections to ints, and prints them out.

 */

import processing.serial.*; // import the Processing serial library

int linefeed = 10; // Linefeed in ASCII

Serial myPort; // The serial port

void setup() {

 // List all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my mac

 // is always my Arduino module, so I open Serial.list()[0].

 // Change the 0 to the appropriate number of the serial port

 // that your microcontroller is attached to.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil(linefeed);

}

void draw() {

 // twiddle your thumbs

}

// serialEvent method is run automatically by the Processing sketch

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) { »

 Try It

easier to send the data as ASCII. For Monski pong, use the
number-formatted version (the first example), and you’ll
see why it’s the right choice later in the chapter.

So, undo the changes you made to the Sensor Reader
program shown earlier, and make sure that it’s working

as it did originally. Once you’ve got the microcontroller
sending the sensor values consistently to the terminal, it’s
time to send them to a program where you can use them
to display a pong game. This program needs to run on a
host computer that’s connected to your Wiring or Arduino
board. Processing will do this well.

MTT_Chapter2.indd 61MTT_Chapter2.indd 61 8/24/07 1:54:54 PM8/24/07 1:54:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

62 MAKING THINGS TALK

Now that you’ve got data going from one object (the microcontroller attached to the monkey) to another (the computer

running Processing), take a closer look at the sequence of bytes you’re sending to exchange the data. Generally, it’s

formatted like this:

Left arm sensor
(0–1023)

Right arm sensor
(0–1023)

Reset button
(0 or 1)

Server button
(0 or 1)

Return character,
linefeed character

1–4 bytes 1–4 bytes 1 byte 1 byte 2 bytes

Data Packets, Headers, Payloads, and Tails

Continued from previous page.

 myString = trim(myString);

 // split the string at the commas

 // and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // print out the values you got:

 for (int sensorNum = 0; sensorNum < sensors.length; sensorNum++) {

 print("Sensor " + sensorNum + ": " + sensors[sensorNum] + "\t");

 }

 // add a linefeed after all the sensor values are printed:

 println();

 }

}

Each section of the sequence is separated by a single

byte whose value is ASCII 44 (a comma). You’ve just

made your first data protocol. The bytes representing

your sensor values and the commas that separate them

are the payload, and the return and newline characters

are the tail. The commas are the delimiters. This data

protocol doesn’t have a header, but many do.

A header is a sequence of bytes identifying what’s

to follow. It might also contain a description of the

sequence to follow. On a network, where many possible

devices could receive the same message, the header

might contain the address of the sender or receiver,

or both. That way any device can just read the header

to decide whether it needs to read the rest of the

message. Sometimes a header is as simple as a single

byte of a constant value, identifying the beginning of

the message. In this example, the tail performs a similar

function, separating one message from the next.

On a network, many messages like this are sent out

all the time. Each discrete group of bytes is called a

packet, and includes a header, a payload, and usually a

tail. Any given network has a maximum packet length.

In this example, the packet length is determined by the

size of the serial buffer on the personal computer. Pro-

cessing can handle a buffer of a few thousand bytes, so

this 16-byte packet is easy for it to handle. If you had a

much longer message, you’d have to divide the message

up into several packets, and reassemble them once

they all arrived. In that case, the header might contain

the packet number, so the receiver knows the order in

which the packets should be re-assembled.

MTT_Chapter2.indd 62MTT_Chapter2.indd 62 8/24/07 1:55:13 PM8/24/07 1:55:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 63

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas

Now replace the serialEvent()
method with this version, which puts
the serial values into the sensor
variables:

8

Sensor 0: 482 Sensor 1: 488 Sensor 2: 1 Sensor 3: 0

Sensor 0: 482 Sensor 1: 488 Sensor 2: 1 Sensor 3: 0

Make sure that you’ve shut down
the Wiring or Arduino application so
that it releases the serial port, then run
this Processing application. You should
see a list of the sensor values in the
message window like this:

8

float leftPaddle, rightPaddle; // variables for the flex sensor values

int resetButton, serveButton; // variables for the button values

int leftPaddleX, rightPaddleX; // horizontal positions of the paddles

int paddleHeight = 50; // vertical dimension of the paddles

int paddleWidth = 10; // horizontal dimension of the paddles

void setup() {

 // set the window size:

 size(640, 480);

 // List all the available serial ports

 println(Serial.list());

 // Open whatever port you're using.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil(linefeed);

 // initialize the sensor values:

 leftPaddle = height/2;

 rightPaddle = height/2;

 resetButton = 0;

 serveButton = 0;

 // initialize the horizontal paddle positions:

 leftPaddleX = 50;

 rightPaddleX = width - 50;

 // set no borders on drawn shapes:

 noStroke();

}

Next, it’s time to use the data to
play pong. First, add a few variables at
the beginning of the Processing sketch
before the setup() method, and change
the setup() to set the window size and
initialize some of the variables (the new
lines are shown in blue):

8

»

MTT_Chapter2.indd 63MTT_Chapter2.indd 63 8/24/07 1:55:31 PM8/24/07 1:55:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

64 MAKING THINGS TALK

Finally, put some code into the
draw() method to draw the paddles:

void draw() {

 background(0);

 // draw the left paddle:

 rect(leftPaddleX, leftPaddle, paddleWidth, paddleHeight);

 // draw the right paddle:

 rect(rightPaddleX, rightPaddle, paddleWidth, paddleHeight);

}

You may not see the paddles when you first
run this code, or until you flex the sensors.

You’ll need to write a scaling function to scale the range
of the sensors to the range of the paddles’ vertical
motion. For this part, it’s important that you have the
sensors embedded in the monkey’s arms, as you’ll be
fine-tuning the system, and you want the sensors in the

locations where they’ll actually get used. Once you’re set
on the sensors’ positions in the monkey, run the Process-
ing program again and watch the left and right sensor
numbers as you flex the monkey’s arms. Write down of the
maximum and minimum values on each arm. To scale the
sensors’ values to the paddles’ movements, use a formula
like this:

paddlePosition = paddleRange * (sensorValue – sensorMinumum) / sensorRange

Add the maximum and minimum
values for your sensors as variables
before the setup() method. Change
these values to match the actual ones
you get when you flex the sensors:

float leftMinimum = 250; // minimum value of the left flex sensor

float rightMinimum = 260; // minimum value of the right flex sensor

float leftMaximum = 450; // maximum value of the left flex sensor

float rightMaximum = 460; // maximum value of the right flex sensor

8

8

Continued from previous page.

 //and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // if you received all the sensor strings, use them:

 if (sensors.length == 4) {

 // assign the sensor strings' values to the appropriate variables:

 leftPaddle = sensors[0];

 rightPaddle = sensors[1];

 resetButton = sensors[2];

 serveButton = sensors[3];

 // print out the variables:

 print("left: "+ leftPaddle + "\tright: " + rightPaddle);

 println("\treset: "+ resetButton + "\tserve: " + serveButton);

 }

 }

}

8

MTT_Chapter2.indd 64MTT_Chapter2.indd 64 8/24/07 1:55:52 PM8/24/07 1:55:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 65

int ballSize = 10; // the size of the ball

int xDirection = 1; // the ball's horizontal direction.

 // left is –1, right is 1.

int yDirection = 1; // the ball's vertical direction.

 // up is –1, down is 1.

int xPos, yPos; // the ball's horizontal and vertical positions

Finally, it’s time to add the ball.
The ball will move from left to right
diagonally. When it hits the top or
bottom of the screen, it will bounce off
and change vertical direction. When it
reaches the left or right, it will reset to
the center. If it touches either of the
paddles, it will bounce off and change
horizontal direction. To make all that
happen, you’ll need five new variables
at the top of the program, just before
the setup() method:

In the setup() method, after you
set the size of the window (the call to
size(640, 480)), you need to give the
ball an initial position in the middle of
the window:

8

 // initialize the ball in the center of the screen:

 xPos = width /2;

 yPos = height/2;

8

NOTE: The variables relating to the paddle

range in this example are floating-point

numbers (floats), because when you divide

integers, you get only integer results. 480/

400, for example gives 1, not 1.2, when both

are integers. Likewise, 400/480 returns 0,

not 0.8333. Using integers when you’re

dividing two numbers that are in the same

order of magnitude produces useless results.

Beware of this when writing scaling functions.

 // if you received all the sensor strings, use them:

 if (sensors.length == 4) {

 // calculate the flex sensors' ranges:

 float leftRange = leftMaximum - leftMinimum;

 float rightRange = rightMaximum - rightMinimum;

 // scale the flex sensors' results to the paddles' range:

 leftPaddle = height * (sensors[0] - leftMinimum) / leftRange;

 rightPaddle = height * (sensors[1] - rightMinimum) / rightRange;

 // assign the switches' values to the button variables:

 resetButton = sensors[2];

 serveButton = sensors[3];

 // print the sensor values:

 print("left: "+ leftPaddle + "\tright: " + rightPaddle);

 println("\treset: "+ resetButton + "\tserve: " + serveButton);

 }

Then change the serialEvent()
method to include the scaling function
for the flex sensor variables. You need
to modify the if() statement that puts
the sensor readings in the paddle
variables. Modify the body of the if()
statement that appears after the line
int sensors[] = int(split(myString, ','));
as shown:

Now the paddles should move from the
top of the screen to the bottom as the
you wave the monkey’s arms.

8

MTT_Chapter2.indd 65MTT_Chapter2.indd 65 8/24/07 1:56:15 PM8/24/07 1:56:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

66 MAKING THINGS TALK

void animateBall() {

 // if the ball is moving left:

 if (xDirection < 0) {

 // if the ball is to the left of the left paddle:

 if ((xPos <= leftPaddleX)) {

 // if the ball is in between the top and bottom

 // of the left paddle:

 if((leftPaddle - (paddleHeight/2) <= yPos) &&

 (yPos <= leftPaddle + (paddleHeight /2))) {

 // reverse the horizontal direction:

 xDirection =-xDirection;

 }

 }

 }

 // if the ball is moving right:

 else {

 // if the ball is to the right of the right paddle:

 if ((xPos >= (rightPaddleX + ballSize/2))) {

 // if the ball is in between the top and bottom

 // of the right paddle:

 if((rightPaddle - (paddleHeight/2) <=yPos) &&

 (yPos <= rightPaddle + (paddleHeight /2))) {

 // reverse the horizontal direction:

 xDirection =-xDirection;

 }

 }

 }

 // if the ball goes off the screen left:

 if (xPos < 0) {

 resetBall();

 }

 // if the ball goes off the screen right:

 if (xPos > width) {

 resetBall();

 }

 // stop the ball going off the top or the bottom of the screen:

 if ((yPos - ballSize/2 <= 0) || (yPos +ballSize/2 >=height)) {

 // reverse the y direction of the ball:

 yDirection = -yDirection;

 }

 // update the ball position:

 xPos = xPos + xDirection;

 yPos = yPos + yDirection;

 // Draw the ball:

 rect(xPos, yPos, ballSize, ballSize);

}

Now, add two methods at the end of
the program, one called animateBall()
and another called resetBall(). You’ll
call these from the draw() method
shortly:

8

»

MTT_Chapter2.indd 66MTT_Chapter2.indd 66 8/24/07 1:56:37 PM8/24/07 1:56:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 67

Continued from opposite page.

 // calculate the ball's position and draw it:

 if (ballInMotion == true) {

 animateBall();

 }

 // if the serve button is pressed, start the ball moving:

 if (serveButton == 1) {

 ballInMotion = true;

 }

 // if the reset button is pressed, reset the scores

 // and start the ball moving:

 if (resetButton == 1) {

 leftScore = 0;

 rightScore = 0;

 ballInMotion = true;

 }

Now you’re ready to animate the
ball. It should move only if it’s been
served. The following code goes at the
end of the draw() method. The first
if() statement starts the ball in motion
when the serve button is pressed. The
second moves it if it’s in service, and
the third resets the ball to the center
and resets the score when the reset
button is pressed:

8

 // if the ball goes off the screen left:

 if (xPos < 0) {

 rightScore++;

 resetBall();

 }

 // if the ball goes off the screen right:

 if (xPos > width) {

 leftScore++;

 resetBall();

 }

Modify the animateBall() method
so that when the ball goes off the
screen left or right, the appropriate
score is incremented (added lines are
shown in blue):

8

boolean ballInMotion = false; // whether the ball should be moving

int leftScore = 0;

int rightScore = 0;

You’re almost ready to set the
ball in motion. But first, it’s time to do
something with the reset and serve
buttons. Add another variable at the
beginning of the code (just before
the setup() method with all the other
variable declarations) to keep track of
whether the ball is in motion, and two
more to keep score:

8

void resetBall() {

 // put the ball back in the center

 xPos = width /2;

 yPos = height/2;

}

MTT_Chapter2.indd 67MTT_Chapter2.indd 67 8/27/07 10:17:20 AM8/27/07 10:17:20 AM

www.it-ebooks.info

http://www.it-ebooks.info/

68 MAKING THINGS TALK

Flow Control
You may notice that the paddles don’t move as smoothly onscreen as Monski’s arms
move. Sometimes the paddles seem not to move at all for a fraction of a second,
and sometimes they seem to lag behind the actions you’re taking. This is because
the communication between the two devices is asynchronous.

Although they agree on the rate at which data is
exchanged, it doesn’t mean that the receiving computer’s
program has to use the bits at the same time as they’re
sent. Monitoring the incoming bits is actually handled by
a dedicated hardware circuit, and the incoming bits are
stored in a memory buffer called the serial buffer until
the current program is ready to use them. Most personal
computers have a buffer that can hold a couple thousand
bytes. The program using the bits (Processing, in the
previous example) is handling a number of other tasks, like
redrawing the screen, handling the math that goes with it,
and sharing processor time with other programs through
the operating system. It may get bytes from the buffer less
than a hundred times a second, even though the bytes are
coming in much faster.

There’s another way to handle the communication
between the two devices that can alleviate this problem.
If Processing asks for data only when it needs it, and if
the microcontroller only sends one packet of data when
it gets a request for data, the two will be in tighter sync.

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], fontSize);

 textFont(myFont);

PFont myFont;

int fontSize = 36;

 // print the scores:

 text(leftScore, fontSize, fontSize);

 text(rightScore, width-fontSize, fontSize);

Last but not least, add the scoring
display. To do this, add two new global
variables before the setup() method:

8

Then add two lines before the
end of the setup() method to initialize
the font:

8

Finally, add two lines before the
end of the draw() method to display
the scores:

Now you can play Monski pong! For
added excitement, get a second pink
monkey and put one sensor in each
monkey so you can play with a friend.

8

NOTE: You can find a complete listing for

this program in Appendix C.

MTT_Chapter2.indd 68MTT_Chapter2.indd 68 8/24/07 2:07:13 PM8/24/07 2:07:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 69

boolean madeContact = false; // whether you've made initial contact

 // with the microcontroller

void loop() {

 // check to see whether there is a byte available

 // to read in the serial buffer:

 if (Serial.available() > 0) {

 // read the serial buffer;

 // you don't care about the value of

 // the incoming byte, just that one was

 // sent:

 int inByte = Serial.read();

 // the rest of the existing main loop goes here

 // ...

 }

}

To make this happen, first wrap
the whole of the loop() method in the
Arduino program (the Sensor Reader
program shown back in the beginning
of the “Project #1: Monski pong”
section) in an if() statement like this:

Next, add some code to the Monski
pong Processing program.

8

First, add a new global variable
before the setup() method. This
variable will keep track of whether
you’ve received any data from the
microcontroller:

8

 // If you haven't gotten any data from the microcontroller yet, send out

 // the serial port to ask for data. What value you send doesnt matter,

 // since the microcontroller code above isn't doing anything with the

 // byte you send. So send a carriage return for debugging purposes:

 if (madeContact == false) {

 myPort.write('\r');

 }

At the beginning of the draw()
method, add this:

8

void serialEvent(Serial myPort) {

 // if serialEvent occurs at all, contact with the microcontroller

 // has been made:

 madeContact = true;

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas

 // and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // if you received all the sensor strings, use them:

 if (sensors.length == 4) {

 // calculate the flex sensors' ranges:

 float leftRange = leftMaximum - leftMinimum;

 float rightRange = rightMaximum - rightMinimum;

Finally, change the serialEvent()
method. New lines are shown in blue:

8

»

MTT_Chapter2.indd 69MTT_Chapter2.indd 69 8/24/07 2:07:33 PM8/24/07 2:07:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

70 MAKING THINGS TALK

Now the paddles should move much more
smoothly. What’s happening now is this: the

microcontroller is programmed to check to see whether
it’s received any bytes serially. If it has, it reads the byte
just to clear the buffer, then sends out its data. Whenever
it gets no bytes, it sends no bytes. Processing, meanwhile,
starts its program by sending a byte out. This triggers the
microcontroller to send an initial set of data. Processing
reads this data in the serial event() method; then, when
it’s got all the data, it sends another byte to request more
data. The microcontroller, seeing a new byte coming in,
sends out another packet of data, and the whole cycle

Continued from previous page.

 // scale the flex sensors' results to the paddles' range:

 leftPaddle = height * (sensors[0] - leftMinimum) / leftRange;

 rightPaddle = height * (sensors[1] - rightMinimum) / rightRange;

 // assign the switches' values to the button variables:

 resetButton = sensors[2];

 serveButton = sensors[3];

 // print the sensnor values:

 print("left: "+ leftPaddle + "\tright: " + rightPaddle);

 println("\treset: "+ resetButton + "\tserve: " + serveButton);

 // send out the serial port to ask for data:

 myPort.write('\r');

 }

 }

}

repeats itself. Neither program has more data from the
other than it can deal with at any given moment. The slight
delay it introduces is not noticeable in the display. In fact,
it’s less of a delay than the previous program had. Notice
that the value of the byte sent is irrelevant. It’s used only as
a signal from the Processing code to let the microcontroller
know when it’s ready for new data. This method of handling
data flow control is sometimes referred to as a handshake
method, or call-and-response. Whenever you’re sending
packets of data, call-and-response flow control can be a
useful way to ensure consistent exchange.
X

MTT_Chapter2.indd 70MTT_Chapter2.indd 70 8/24/07 2:07:55 PM8/24/07 2:07:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 71

Wireless Monski pong
Monski pong is fun, but it’d be more fun
if Monski didn’t have to be tethered to
the computer through a USB cable. This
project breaks the wired connection
between the microcontroller and the
personal computer, and introduces a few
new networking concepts: the modem
and the address.

NOTE: If your personal computer doesn’t have a built-in Bluetooth

radio, you’ll also need a Bluetooth adaptor for it. The Bluetooth

v.1.2 USB module that SparkFun carries will work fine, and most

computer stores carry USB Bluetooth adaptors.

Bluetooth: A Multilayer Network Protocol
The new piece of hardware in this project is the Bluetooth
module. This module has two interfaces: two of its pins,
marked RX and TX, are an asynchronous serial port that
can communicate with a microcontroller. It also has a
radio that communicates using the Bluetooth communica-
tions protocol. It acts as a modem, translating between
the Bluetooth and regular asynchronous serial protocols.

NOTE: The first digital modems were devices that took data

signals and converted them to audio signals to send them across

a voice telephone connection. They modulated the data on the

audio connection, and demodulated the audio signal back into a

data signal. These simple serial-to-audio modems are becoming

increasingly rare, but their descendants are everywhere, from the

MATERIALS

1 completed Monski pong project from earlier
1 9V battery and battery snap connector
SparkFun (www.sparkfun.com) part number
PRT-00091, or Digi-Key (www.digikey.com) part
number 2238K-ND
1 BlueSMiRF Bluetooth modem module
from SparkFun (part WRL-00582)
1 project box to house the microcontroller,
battery, and radio board

»
»

»

»

set-top boxes that modulate and demodulate your Internet con-

nection from the cable television data signal to the sonar modems

that convert data into ultrasonic pings to be sent from ships to

submarine exploration robots used in marine research.

Bluetooth is a multilayered communications protocol,
designed to replace wired connections for a number of
applications. As such, it’s divided into a group of possible
applications protocols called profiles. The simplest
Bluetooth devices are serial devices like the module used
in this project. These implement the Bluetooth Serial
Port Profile (SPP). Other Bluetooth devices implement
other protocols. Wireless headsets implement the audio
Headset Profile. Wireless mice and keyboards implement
the Human Interface Device (HID) Profile. Because there
are a number of possible profiles a Bluetooth device might
support, there is also a Service Discovery Protocol, via
which radios exchange information about what they can
do. Because the protocol is standardized, you get to skip
over most of the details of making and maintaining the
connection so you can concentrate on exchanging data.
It’s a bit like how RS-232 and USB made it possible for
you to ignore most of the electrical details necessary to
connect your microcontroller to your personal computer,
so you could focus on sending bytes in the last project.

Add the Bluetooth module to the Monski pong breadboard
as shown in Figure 2-8. Connect the module’s ground to
the ground on the Arduino module, and its input pin to the
5-volt output from the module. Move the power jumper on
the Arduino module so that it’s closest to the DC power
jack. Then connect the battery’s black wire to the module’s
ground, and its red wire to the +9V power pin. The module
will start up, and the Bluetooth radio’s green LED will blink.

Pairing Your Computer
with the Bluetooth Module

To make a wireless connection from your computer to the
module, you have to pair the two of them. To do this, open
your computer’s Bluetooth control panel to browse for new
devices. In Mac OS X, choose the Apple menu#System
Preferences, then click Bluetooth. In the Settings tab,
make sure Bluetooth is turned on, and check Discoverable
and Show Bluetooth Status in Menu Bar. In the Devices
tab, click Set Up New Device to launch the Bluetooth
Setup Assistant. When you have to choose a device type,

Project 2

MTT_Chapter2.indd 71MTT_Chapter2.indd 71 8/24/07 2:08:30 PM8/24/07 2:08:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

72 MAKING THINGS TALK

Figure 2-8
Monski pong board, with Bluetooth
module added. Be sure to switch the
power jumper to the DC power jack side.
Once you’ve built the circuit for this, drill
holes in the project box for the buttons
and the wires leading to the flex sensors.
Mount the breadboard, Arduino module,
and battery in the project box.

MTT_Chapter2.indd 72MTT_Chapter2.indd 72 8/24/07 2:08:50 PM8/24/07 2:08:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 73

Make it small
You might want to shrink
Monski pong down so it's more
compact. This figure shows the
Monski pong circuit on a bread-
board shield. This is the same
circuit as the one in Figure 2-6,
just on a different breadboard
so it can fit in a project box.

All boxed up
Kitchen storage containers
make excellent project boxes.
Here’s the Monski pong con-
troller with Monski attached.

Finishing Touches: Tidy it up, box it up

MTT_Chapter2.indd 73MTT_Chapter2.indd 73 8/24/07 2:09:15 PM8/24/07 2:09:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

74 MAKING THINGS TALK

choose Any Device. The computer will search for devices,
and will find one called BlueRadios-COM0-1. If you have
no other Bluetooth devices nearby, it will be the only one.
Choose this device, and when asked for a passkey, enter
default. A connection will be established, and you’ll be told
that there are no selected services on this device. That’s
okay. Continue until you can quit the Assistant.

In Windows, the process differs, depending on the
Bluetooth radio you have installed. There are several
different Bluetooth radios available for Windows machines,
and each one has a slightly different user interface. XP
Service Pack 2 introduced a unified configuration interface
for Bluetooth, but some older radios still use the vendor-
specific configuration tools. The user manual for your
specific radio will cover the details you need, but the
process will be something like this:

Right-click the Bluetooth Icon in the lower righthand
corner of the taskbar (this area is called the system tray or
notification area) to access the Bluetooth settings. Check
the device or security properties to make sure that your
computer’s Bluetooth device is discoverable, connectable,
and pairable. Check the service properties to make sure
that Bluetooth COM port service is enabled. Then add a
new Bluetooth device. When you get the option to search
for new devices, do so, and you should see the BlueSMiRF
(with a name such as BlueRadios COM) device show up in

the list of available devices. If you have no other Bluetooth
devices nearby, it will be the only one. When prompted for
a password, enter default. This step will add a new serial
port to your list of serial ports. Make note of the port name
(mine is COM40), so you can use it later.

Adjusting the Monski pong Program
Once your computer has made contact with the Bluetooth
module, you can connect to it like a serial port. Run the
Monski pong Processing sketch and check the list of serial
ports. You should see the new port listed along with the
others. Take note of which number it is, and change this
line in the setup() method:

myPort = new Serial(this, Serial.list()[0], 9600);

For example, if the Bluetooth port is the ninth port in your list,
change the line to open Serial.list[8]. With no other changes
in code, you should now be able to connect wirelessly.
Monski is free to roam around the room as you play pong
When the Processing program makes a connection to the
Bluetooth module, the green LED on the module will turn
off and the red one will come on.

If you haven’t modified your Arduino and Processing code
to match the call-and-response version of the Monski
pong program shown in the “Flow Control” section earlier,
you might have a problem making a connection to the
radio. If so, the green LED will stay on and not flash. What’s
happening is that the microcontroller module is sending
serial data constantly, and the Bluetooth module’s serial
buffer is filling up. When a wireless connection is made, the
Bluetooth module sends a string out on the TX pin with the
address of the device that made the connection, like so:

CONNECT,000D93039D96

Because this line always ends with a carriage return, you
can listen for that in your microcontroller code by using
the call-and-response method described earlier, so make
those modifications before going any further. Now the
program will do nothing until it sees an initial carriage
return; then it will send data continually.

If you plug or unplug any serial devices after you

do this, including the Arduino, you’ll need to quit and restart

the Processing program, as the count of serial ports will

have changed.

!

Mac OS X users: If you’re using a version of Mac OS

X before version 10.4, you can only enter numeric passkeys.

You’ll need to change the module’s passkey first. To do this,

connect the TX and RX pins to a serial port on the computer.

See the next project in this chapter for the details on

connecting the Bluetooth module to the serial port. Once

you’re connected, send the following string to the module

to change the password:

ATSP,0000,default,\r

Replace the 0000 with your own numeric password, and

press Enter in place of \r. (In this book, \r denotes a

carriage return, or ASCII value 13, and \n denotes a newline

character, or ASCII value 10). Then reset the module by

unplugging it and plugging it back in. Now you can follow

the previous instructions to make a pairing between your

computer and the Bluetooth module. Once you’ve done that,

reconnect the Bluetooth module to the Monski pong project

as shown above.

!

MTT_Chapter2.indd 74MTT_Chapter2.indd 74 8/24/07 2:09:54 PM8/24/07 2:09:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 75

Wire the Bluetooth module to the USB-to-serial converter
as shown in Figure 2-9. The USB-to-serial converter
converts the TTL serial signals from the BlueSMiRF
module to USB. Connect the converter to a USB port on
your computer and open your serial terminal program.
open a connection to the USB-to-serial converter’s serial
port at 9600 bits per second.

Modems are designed to open a connection to another
modem, negotiate the terms of data exchange, carry on an
exchange, then disconnect. To do this, they have to have
two operating modes, usually referred to as command
mode, in which you talk to the modem, and data mode,

Negotiating in Bluetooth
The steps you went through with the
Bluetooth Assistant or Bluetooth Wizard
negotiated a series of exchanges between
your computer and the BlueSMiRF module
that included discovering other radios,
learning the services offered by those
radios, and pairing to open a connection.
It’s very convenient to be able to do this
from the graphical user interface, but
it’d be even better if the devices could
negotiate this exchange themselves. In the
section that follows, you’ll negotiate some
parts of that exchange directly, in order to
understand how to program devices that
can do that negotiation.

MATERIALS

1 BlueSMiRF basic module from SparkFun
(part WRL-00582)
1 USB-to-serial converter The SparkFun
BOB-00718 is shown next, but you can also
use the MAX3323 and USB-to-RS-232 converter
version as shown earlier.
1 solderless breadboard

»

»

»

in which you talk through the modem. Bluetooth modems
are no different in this respect. Most Bluetooth modems
use a set of commands based on the original commands
designed for telephone modems, known as the Hayes
AT command protocol. All commands in the Hayes
command protocol (and therefore in Bluetooth command
protocols as well) are sent using ASCII characters. There’s
a common structure to all the AT commands. Each
command sent from the controlling device (like a micro-
controller or personal computer) to the modem begins
with the ASCII string AT followed by a short string of letters
and numbers representing the command, followed by any
parameters of the command, separated by commas. The
command ends with an ASCII carriage return. For example,
here’s the string to ask the BlueRadios module inside of
the BlueSMiRF module for its firmware version:

ATVER,ver1\r

The \r is a carriage return. Hit the Return key whenever
you see it here. Type it into the serial terminal program
now. The BlueRadios module should respond with
something like this:

Ver 3.4.1.2.0

Any time you want to just check that the module is
working, type AT\r. It will respond with OK. There’s a list
of all the commands available for this module available
from www.sparkfun.com or from www.blueradios.com.
A few of them are covered here. Each Bluetooth modem
manufacturer has its own set of AT commands, and unfor-
tunately they’re all different. But they are all based on the
AT command protocol, so they’ll all have the same basic
format as the one you see here.

Currently, the module is in command mode. One of the
first things you’d like it to do is to give you a list of other
Bluetooth-enabled devices in the area. If you’ve got more
devices than just your laptop around, take a rough guess of
how many, and type this sequence of commands:

ATUCL\r

This clears any current commands, and puts the module in
idle mode. The module will return OK. Then type:

ATDI,3,00000000\r

Project 3

MTT_Chapter2.indd 75MTT_Chapter2.indd 75 8/24/07 2:10:15 PM8/24/07 2:10:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

76 MAKING THINGS TALK

Figure 2-9
BlueSMiRF module connected to a FT232RL
USB-to-serial converter.

MTT_Chapter2.indd 76MTT_Chapter2.indd 76 8/24/07 2:10:34 PM8/24/07 2:10:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 77

ATDI tells it to look for other radios. 3 tells it to look until it
finds three others. 00000000 tells it to look for any type
of Bluetooth radio (phone, headset, serial device, etc).
After several seconds, it will come back with a list like this:

00038968505F,00200404

000D93039D96,0010210C

00119FC2AD3C,0050020C

DONE

This is a list of all the other Bluetooth devices it found. The
first part of every string is the device’s unique address.
That’s the part you need in order to make a connection to
it. Manufacturers of Bluetooth devices agree on a standard
addressing scheme so no two devices get the same
address. The second part is the device class (what type of
device it is), and the third, when there is one, the device’s
name. Names don’t have to be unique, but addresses do,
which is why you always use the address to connect.

Now that you’ve got a list of connections, try to connect to
the one that represents your computer, like so:

ATDM,address,1101\r

ATDM tells the module to attempt to connect. The address
tells it what device to connect to, and 1101 tells it what
profile to use; in this case, the serial port profile. The
BlueSMiRF should respond:

NO ANSWER

Next you need to open the serial port on your computer
that’s connected to its Bluetooth radio. In Mac OS X, it’s
the Bluetooth PDA-Sync port. Open a second window in
your terminal program, and connect to that serial port
using GNU Screen, like so:

screen /dev/tty.Bluetooth-PDA-Sync 9600

For Windows users, the COM port varies depending
on your Bluetooth device, but if you check the Device
Manager’s list of serial ports, you’ll see several associated
with the Bluetooth radio. Use the lowest numbered one
that will open in PuTTY (most of them will refuse to open).
That should be the port that your radio can connect to.

If you’re using the standard Windows Bluetooth interface,
right-click the Bluetooth icon in the system tray and
choose Device Properties and Security. Make sure your
radio is discoverable, connectable, and pairable.

Go back to the window with the serial connection to the
BlueSMiRF, and send the following command:

ATPAIR, address\r

where address is the Bluetooth address of your computer
that you discovered earlier using ATDI.

The computer will ask you for a passkey. Enter default.
The BlueSMiRF should reply:

PAIRED,address

Once you’re paired, you need to connect, using the
following AT command:

ATDM,address,1101\r

When you get a good connection to the BlueSMiRF, the
LED on it will turn red, and you’ll get a message like this:

CONNECT,000D93039D96

You’re now out of command mode and into data mode.
You should be able to type directly from one window to the
other.

NOTE: You can’t initiate a connection from the BlueSMiRF to the

computer unless you’ve already paired with the BlueSMiRF from

the computer previously. This is so because BlueSMiRF radios can’t

initiate a serial connection unless they’ve already made a pairing

with the other device. You’ll see more on these radios in Chapter 6.

To get out of data mode (to check the modem’s status,
for example), type:

+++\r

This will give you an OK prompt again. You can type any of
the AT commands you want now, and get replies. To return
to data mode, type:

ATMD\r

Finally, when you’re in command mode, you can type
ATDH\r to disconnect, and you’ll get this reply:

NO CARRIER

That means you’re disconnected. If you want to connect
to another device, start by putting the module back in idle

MTT_Chapter2.indd 77MTT_Chapter2.indd 77 8/24/07 2:10:58 PM8/24/07 2:10:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

78 MAKING THINGS TALK

Second, remember that serial data can be sent either
as ASCII or as raw binary values, and which you choose
to use depends both on the capabilities and limitations
of the devices you’re connecting, and on all the devices
in the middle that connect them. It might not be wise to
send raw binary data, for example, if the modems or the
software environments you program in are optimized for
ASCII data transfer.

Third, when you think about your project, think about the
messages that need to be exchanged, and come up with
a data protocol that adequately describes all the informa-
tion you need to send. This is your data packet. You might
want to add header bytes, separators, or tail bytes to make
reading the sequence easier.

Conclusion
The projects in this chapter have covered a number of ideas that are central to all
networked data communication. First, keep in mind that data communication is based
on a layered series of agreements, starting with the physical layer, then the electrical,
the logical, the data, and finally the application layer. Keep these layers in mind as you
design and troubleshoot your projects and you’ll find it easier to isolate problems

mode with ATUCL\r and following the same steps as
previously.

Because the AT commands are just text strings, you can
easily use them in microcontroller programs to control the
module, make and break connections, and exchange data.

Because all the commands are in ASCII, it’s a good idea
to exchange data in ASCII mode, too. So the data string
that you set up earlier to send Monski’s sensor readings
in ASCII would work well over this modem.
X

Fourth, think about the flow of data, and look for any ways
you can ensure a smooth flow with as little overflowing of
buffers or waiting for data as possible. A simple call-and-
response approach can make data flow much smoother.

Finally, get to know the modems and other devices that
link the objects at the end of your connection. Make
sure you understand their addressing schemes and any
command protocols they use so that you can factor their
strengths and limitations into your planning, and eliminate
those parts that make your life more difficult. Whether
you’re connecting two objects or two hundred, these same
principles will apply.
X

The JitterBox by Gabriel Barcia-Colombo

The JitterBox is an interactive video Jukebox created from a vintage 1940’s radio restored to working condition. It features a tiny video-
projected dancer who shakes and shimmies in time with the music. The viewer can tune the radio and the dancer will move in time with the
tunes. The JitterBox uses serial communication from an embedded potentiometer tuner which is connected to an Arduino microcontroller
in order to select from a range of vintage 1940’s songs. These songs are linked to video clips and played back out of a digital projector.
The dancer trapped in the JitterBox is Ryan Myers.

MTT_Chapter2.indd 78MTT_Chapter2.indd 78 8/24/07 2:11:16 PM8/24/07 2:11:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

THE SIMPLEST NETWORK 79

MTT_Chapter2.indd 79MTT_Chapter2.indd 79 8/24/07 2:11:38 PM8/24/07 2:11:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

80 MAKING THINGS TALK

MTT_Chapter3.indd Sec1:80MTT_Chapter3.indd Sec1:80 8/28/07 4:58:17 PM8/28/07 4:58:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A More Complex
Network
Now that you’ve got the basics of network communications, it’s time

to tackle something more complex. The best place to start is with

the most familiar data network: the Internet. It’s not actually a single

network, but a collection of networks all owned by different network

service providers and linked using some common protocols. This

chapter describes the structure of the Internet, the devices that hold

it together, and the shared protocols that make it possible. You’ll get

hands-on experience with what’s going on behind the scenes when your

web browser or email client is doing its job, and you’ll use the same

messages those tools use to connect your own objects to the Net.

3
MAKE: PROJECTS

Networked Flowers by Doria Fan, Mauricio Melo, and Jason Kaufman.

Networked Flowers is a personal communication device for sending someone digital blooms. Each bloom has a
different lighting animation. The flower sculpture has a network connection. The flower is controlled from a website
that sends commands to the flower when the web visitor chooses a lighting animation.

MTT_Chapter3.indd Sec1:81MTT_Chapter3.indd Sec1:81 8/28/07 4:58:59 PM8/28/07 4:58:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

82 MAKING THINGS TALK

Network Maps and Addresses
In the last chapter, it was easy to keep track of where messages went, because there
were only two points in the network you built: the sender and the receiver. In any
network with more than two objects, from three to three billion, you need a map
to keep track of which objects are connected to which, and an addressing scheme
to know how a message gets to its destination.

Network Maps: How
Things Are Connected
The arrangement of physical connections on a network
depends on how you want to route the messages on that
network. The simplest way is to make a physical connec-
tion from each object in the network to every other object.
That way, messages can get sent directly from one point
to another. The problem with this approach, as you can
see from the directly connected network in Figure 3-1, is
that the number of connections gets large very fast, and
the connections get tangled. A simpler alternative to this
is to put a central controller in the middle, and pass all
messages through this hub, as seen in the star network.
This way works great as long as the hub continues to
function, but the more objects you add, the faster the hub
has to be to process all the messages. A third alternative is
to daisy-chain the objects, connecting them together in a
ring. This design makes for a small number of connections,
and it means that any message has two possible paths,
but it can take a long time for messages to get halfway
around the ring to the most distant object.

Figure 3-1
Three types of network: direct connections between all elements,
a star network, and a ring network.

In practice (such as on the Internet), a multitiered star
model like the one shown in Figure 3-2 works best. Each
connector (symbolized by a light-colored circle) has a
few objects connected to it, and each connector is linked
to a more central connector. At the more central tier
(the dark-colored circles in Figure 3-2), each connector
may be linked to more than one other connector, so that
messages can pass from one endpoint to another via
several different paths. This system takes advantage of the
redundancy of multiple links between central connectors,
but avoids the tangle caused by connecting every object
to every other object.

If one of the central connectors isn’t working, messages
are routed around it. The connectors at the edges are
the weakest points. If they aren’t working, the objects
that depend on them have no connection to the network.

Star network

Directly connected network Ring network

MTT_Chapter3.indd Sec1:82MTT_Chapter3.indd Sec1:82 8/28/07 4:59:41 PM8/28/07 4:59:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 83

As long as the number of objects connected to each of
these is small, though, the effect on the whole network is
minimal. It may not seem minimal when you’re using the
object whose connector fails, but at least the rest of the
network remains stable, so it’s easy to reconnect when
your connector is working again.

If you’re using the Internet as your network, you can
take this model for granted. If you’re building your own
network, however, it’s worth comparing all of these models
to see which is best for you. In some simpler systems, one
of the three networks shown in Figure 3-1 might do the
job just fine, and save you some complications. As you get
further in the book, you’ll see some examples of these, but
for the rest of this chapter, you’ll work with the multitiered
model by relying on the Internet as your infrastructure.
X

Figure 3-2
A complex, multitiered network.

The connectors in Figure 3-2 represent several different

types of devices on the Internet. The most common among

these are modems, hubs, switches, and routers. Depending

on how your network is set up, you may be familiar with one

or more of these. There’s no need to go into detail as to the

differences, but some basic definitions are in order:

A modem is a device that converts one type of signal into

another, and connects one object to one other object. Your

home cable or DSL modem is an example. It takes the digital

data from your home computer or network, converts it to

a signal that can be carried across the phone line or cable

line, and connects to another modem on the other end of

the line. That modem is connected to your Internet service

provider’s network. By this definition, the Bluetooth radios

from Chapter 2 could be considered modems, as they

convert electrical signals into radio signals and back.

A hub is a device that multiplexes data signals from several

devices and passes them upstream to the rest of the net.

It doesn’t care about the recipients of the messages it’s

carrying — it just passes them through in both directions.

All the devices attached to a hub receive all the messages

that pass through the hub, and each one is responsible for

filtering out any messages that aren’t addressed to it. Hubs

are cheap and handy, but they don’t really manage traffic

at all.

A switch is like a hub, but more sophisticated. It keeps track

of the addresses of the objects attached to it, and passes on

only messages addressed to those objects. Objects attached

to a hub don’t get to see messages that aren’t addressed

to them.

Modems, hubs, and switches generally don’t actually have

their own addresses on the network (though some cable and

DSL modems do). A router, on the other hand, is visible to

other objects on the network. It has an address of its own,

and can mask the objects attached to it from the rest of the

net. It can give them private addresses, meaningful only to

the other objects attached to the router, and pass on their

messages as if they come from the router itself. It can also

assign IP addresses to objects that don’t have one when

they’re first connected to the router.

Modems, Hubs, Switches, and Routers

Multitiered network

MTT_Chapter3.indd Sec1:83MTT_Chapter3.indd Sec1:83 8/28/07 5:02:51 PM8/28/07 5:02:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

84 MAKING THINGS TALK

Hardware Addresses
and Network Addresses

Whether you’re using a simple network model where
all the objects are directly connected, a multitiered
model, or anything in between, you need an address-
ing scheme to get messages from one point to another
on the network. When you’re making your own network
from scratch, you have to make up your own address-
ing scheme. For the projects you’re making in this book,
however, you’re relying on existing network technologies,
so you get to use the addressing schemes that come with
them. For example, when you used the Bluetooth radios
in Chapter 2, you used the Bluetooth protocol address-
ing scheme. When you connect Internet devices, you use
the Internet Protocol (IP) addressing scheme. Because
most of the devices you connect to the Internet also rely
on a protocol called Ethernet, you also use the Ethernet
address protocol. A device’s IP address can change when
it’s moved from one network to another, but its hardware
address, or Media Access Control (MAC) address, is
burned into the device’s memory and doesn’t change.
It’s a unique ID number assigned by the manufacturer
that differentiates that device from all the other Ethernet
devices on the planet. Wi-fi adapters also have hardware
addresses.

Figure 3-3
Network settings panels for Mac OS X and Windows.

You’re probably already familiar with your computer’s IP
address and maybe even its hardware address. In Mac OS
X, Click Apple Menu→Location→Network Preferences to
open the Network control panel, and you’ll get a list of the
possible ways your computer can connect to the net.
Click on the popup menu labeled Show and you get a list
of the network interfaces. It’s likely that you have at least
a built-in Ethernet interface and an Airport interface. The
built-in Ethernet and Airport interfaces both have hardware
addresses, and if you choose either interface, you can
find out that interface’s hardware address. For Airport,
it’s listed as the Airport ID under the Airport tab, and for
the built-in Ethernet, it’s called the Ethernet ID under
the Ethernet tab. In either interface, click on the TCP/IP
tab and you can see the machine’s IP address if you’re
connected to a network.

In Windows, click the Start Menu→Control Panel, then
double-click Network Connections. Each network interface
has its own icon in this control panel. Click Local Area
Connection for your built-in Ethernet connection, or
Wireless Network Connection for yourWi-FI connection.
Under the Support tab, click Details to see the IP settings
and hardware address.

MTT_Chapter3.indd Sec1:84MTT_Chapter3.indd Sec1:84 8/28/07 5:03:12 PM8/28/07 5:03:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 85

You can read the number of machines in the subnet
by reading the value of the last octets of the subnet
mask. It’s easiest if you think of the subnet in terms of
bits. Four bytes is 32 bits. Each bit you subtract from
the subnet increases the number of machines it can
support. Basically, you “subtract” the subnet mask
from its maximum value of 255.255.255.255 to get the
number of machines. For example, if the subnet were
255.255.255.255, then there could be only one machine
in the subnet, the router itself. If the last octet is 0, as it is
above, then there can be up to 255 machines in the subnet
in addition to the router. A subnet of 255.255.255.192
would support 63 machines and the router (255 – 192 =
64), and so forth. Table 3-1 shows a few other representa-
tive values to give you an idea.

Knowing the way IP addresses are constructed helps you
to manage the flow of messages you send and receive.
Normally, all of this is handled for you by the software you
use: browsers, email clients, and so forth. But when you’re
building your own networked objects, it’s necessary to
know at least this much about the IP addressing scheme
so you can find your router and what’s beyond it.

Numbers into Names
By now you’re probably thinking that this is ridiculous,
because you only know internet addresses by their
names, like www.makezine.com, or www.archive.net. You
never deal with numerical addresses, nor do you want to.
There’s a separate protocol, the Domain Name System
(DNS), for assigning names to the numbers. Machines
on the network called nameservers keep track of which
names are assigned to which numbers. In your computer’s
network configuration, you’ll notice a slot where you can
enter the DNS address. Most computers are configured to
obtain this address from a router using the DHCP protocol
(which also provides their IP address), so you don’t have

Figure 3-3 shows the network connection settings for Mac
OS X and Windows. No matter what platform you’re on,
the hardware address and the Internet address will take
these forms:

The hardware address is made up of six numbers, written
in hexadecimal notation, like this: 00:11:24:9b:f3:70

The IP address is made up of four numbers, written in
decimal notation, like this: 192.168.1.20

You’ll need to know the IP address to send and receive
messages, and you’ll need to know the hardware address
in order to get an IP address on some networks, so
make note of both of them for every device you’re using
whenever you start to work on a new project.

Street, City, State, Country: How
IP Addresses Are Structured

Geographic addresses can be broken down into layers of
detail, starting with the most specific (the street address)
and moving to the most general (the country). Internet
addresses are also multilayered. The most specific part
is the final number, which tells you the address of the
computer itself. The numbers that precede this tell you
the subnet that the computer is on. Your router shares the
same subnet as your computer, and its number is usually
identical except for the last number. The numbers of an IP
address are called octets, and each octet is like a section
of a geographic address. For example, imagine a machine
with this number: 192.168.0.20

The router that this machine is attached to most likely has
this address: 192.168.0.1

Each octet can range from 0–255, and some numbers are
reserved by convention for special purposes. For example,
the router is often the address xxx.xxx.xxx.1. The subnet
can be expressed as an address range, 217.123.152.xxx.
Sometimes a router manages a larger subnet, or even a
group of subnets, each with their own local router. The
router that this router is connected to might have the
address 192.168.0.1

Each router controls access for a defined number of
machines below it. The number of machines it controls is
encoded in its subnet mask. You’ve probably encountered
a subnet mask in configuring your personal computer.
A typical subnet mask looks like this: 255.255.255.0

Table 3-1. The relationship between subnet mask and maximum
number of machines on a network.

Subnet mask
Maximum number of machines on
the subnet, including the router

255.255.255.255 1 (just the router)

255.255.255.192 64

255.255.255.0 256

255.255.252.0 1024

255.255.0.0 65,536

MTT_Chapter3.indd Sec1:85MTT_Chapter3.indd Sec1:85 8/28/07 5:03:34 PM8/28/07 5:03:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

86 MAKING THINGS TALK

to worry about configuring DNS. In some of this chapter’s
projects, you won’t be going out to the Internet at large, so
your devices won’t have names, just numbers. When that
happens, you’ll need to know their numerical addresses.

NOTE: And when you go out to the Internet at large from a micro-

controller, you first need to use a DNS utility on your computer

to look up the numeric address for the hosts you want to talk to,

then embed the numeric address in your microcontroller program.

This is because there’s just enough room in the Lantronix network

modules used here to support basic networking functionality, and

unfortunately, DNS support is usually not included.

Packet Switching: How Messages
Travel the Net
So how does a message get from one machine to another?
Imagine the process as akin to mailing a bicycle. The
bike’s too big to mail in one box, so first you break it into
box-sized pieces. On the network, this is initially done at
the Ethernet layer, also called the datalink layer, where
each message is broken into chunks of more or less the
same size, given a header containing the packet number.
Next, you’d put the address (and the return address)
on the bike’s boxes. This step is handled at the IP layer,
where the sending address and the receiving address are
attached to the message in another header. Finally, you
send it. Your courier might want to break the shipment
up among several trucks to make sure each truck is used

to its best capacity. On the Internet, this happens at the
transport layer. This is the layer of the network responsible
for making sure packets get to their destination. There
are two protocols used to handle transport of packets on
the Internet: Transmission Control Protocol, or TCP, and
User Datagram Protocol, or UDP. You’ll learn more about
these later. The main difference between them is that TCP
provides more error checking from origin to destination,
but is slower than UDP. UDP trades off error checking for
speed.

Each router sends off the packets one at a time to
whatever routers it’s connected to. If it’s attached to more
than one other router, it sends the packets to whichever
router is least busy. The packets may each take a different
route to the receiver, and they may take several hops
across several routers to get there. Once they reach their
destination, the receiver strips off the headers and reas-
sembles the message. This method of sending messages
in chunks across multiple paths is called packet switching.
It ensures that every path through the network is used
most efficiently, but sometimes packets are dropped or
lost. You’ll learn more on how that’s handled in Chapters 5
and 6. For now, assume that the network is reliable enough
that you can forget about dropped packets.

There’s a command-line tool that can be useful in deter-
mining if your messages are getting through, called ping.
It sends a message to another object on the net to say
“Are you there?” and waits for a reply.

Not every object on the Internet can be addressed by every

other object. Sometimes, in order to be able to support

more objects, a router hides the addresses of the objects

attached to it, and sends all their outgoing messages to the

rest of the net as if they came from the router itself. There

are special ranges of addresses set aside in the IP address-

ing scheme for use as private addresses. For example, all

addresses in the range 192.168.xxx.xxx are to be used for

private addressing only. This address range is in common

use in home routers, and if you have one, all the devices

on your home network probably show up with addresses in

this range. When they send messages to the outside world,

though, those messages show up as if they came from your

router’s public IP address. Here’s how it works:

My computer, with the address 192.168.1.45 on my home

network, makes a request for a web page on a remote

server. That request goes first to my home router. On my

home network, the router’s address is 192.168.1.1, but to the

rest of the Internet, my router presents a public address,

66.187.145.75. The router passes my message on, sending

it from its public address, and requesting that any replies

come back to its public address. When it gets a reply, it

sends the reply to my computer. Thanks to private address-

ing and subnet masks, multiple devices can share a single

public IP address. This ability expands the total number of

things that can be attached to the Internet.

Private and Public IP Addresses

MTT_Chapter3.indd Sec1:86MTT_Chapter3.indd Sec1:86 8/28/07 5:03:58 PM8/28/07 5:03:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 87

To use it, open up the command-line application on your
computer (Terminal on Mac OS X, the Command Prompt
on Windows, and xterm or similar on Linux/Unix). On Mac
OS X or Linux, type the following:

ping -c 10 127.0.0.1

On Windows, type this:

ping -n 10 127.0.0.1

This sends a message to address 127.0.0.1 and waits for a
reply. Every time it gets a reply, it tells you how long it took,
like this:

64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.166 ms

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.157 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.182 ms

After counting ten packets (that’s what the –c 10 on Mac
and -n 10 on Windows means), it stops and gives you a

summary like this:

--- 127.0.0.1 ping statistics ---

10 packets transmitted, 10 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.143/0.164/0.206/0.015 ms

It gives you a good picture not only of how many packets
got through, but also how long they took. It’s a useful
way to learn quickly if a given device on the Internet is
reachable or not, and how reliable the network is between
you and that device. Later on, you’ll be using devices that
have no physical interface that you can see activity on, so
you’ll need ping to know whether they’re working or not.

NOTE: 127.0.0.1 is a special address called the loopback address

or localhost address. Whenever you use it, the computer you’re

sending it from loops back and sends the message to itself. You

can also use the name localhost in its place. You can test many

network applications using this address, even when you don’t have

a network connection, as you’ll see in future examples.

X

How Web Browsing Works
Figure 3-4 is a map of the routes web pages take to reach
your computer. Your browser sends out a request for a
page to a web server, and the server sends the page back.
Which route the request and the reply take is irrelevant,
as long as there is a route. The web server itself is just a
program running on a computer somewhere else on the
Internet. A server is a program that provides a service to
other programs on the Net. The computer that a server
runs on, also referred to as a server, is expected to be
online and available at all times so that the service is not
disrupted. In the case of a web server, the server provides

access to a number of HTML files, images, sound files, and
other elements of a website to clients from all over the
net. Clients are programs that take advantage of services.
Your browser, a client, makes a connection to the server
to request a page. To facilitate that, the computer that
your browser is running on makes a connection to the
computer that the server is running on, and the exchange
is made.

The server computer shares its IP address with every
server program running on it by assigning each program
a port number. For example, every connection request

Clients, Servers, and Message Protocols
Now you know how the Internet is organized, but how do things get done on the Net?
For example, how does an email message get from you to your friend? Or how does
a web page get to your computer when you type a URL into your browser or click on a
link? It’s all handled by sending messages back and forth between objects, using the
transport scheme just described. When you know that works, you can take it for
granted and concentrate on the messages.

MTT_Chapter3.indd Sec1:87MTT_Chapter3.indd Sec1:87 8/28/07 5:07:02 PM8/28/07 5:07:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

88 MAKING THINGS TALK

Figure 3-4
The path from a website to your
browser. Although the physical
computers are in many different
locations, that doesn’t matter
to you, as long as you know the
websites’ addresses.

Your computer

Your router

Your cable or
DSL modem

Your network
provider

Internet

Website’s
network
provider

Website’s
network
provider

Website’s serverWebsite’s server

for port 80 is passed to the web server program. Every
request for port 25 is passed to the email server program.
Any program can take control of an unused port, but only
one program at a time can control a given port. In this way,
network ports work much like serial ports. Many of the
lower port numbers are assigned to common applications
like mail, file transfer, telnet, and web browsing. Higher
port numbers are either disabled or left open for custom
applications. (You’ll write one of those soon.) A specific
request goes like this:

1. You type http://www.makezine.com/index.html into
your browser.

2. The browser program contacts www.makezine.com on
port 80.

3. The server program accepts the connection.
4. The browser program asks for a specific file name,

index.html.

5. The server program looks up that file on its local file
system, and prints the file out via the connection to the
browser. Then it closes the connection.

6. The browser reads the file, looks up any other files it
needs (like images, movies, style sheets, and so forth),
and repeats the connection request process, getting all
the files it needs to display the page. When it has all the
files, it strips out any header information and displays
the page.

All of the requests from browser to server and all of the
responses from server to browser (except the images and
movie files) are just strings of text. To see this process
in action, you can duplicate the request process in the
terminal window. Open up your command program again
just as you did for the ping example shown earlier. (If
you’re using Windows Vista, you may need to enable telnet
with Control Panel→Programs→Turn Windows features on
or off.)

MTT_Chapter3.indd Sec1:88MTT_Chapter3.indd Sec1:88 8/31/07 10:59:35 AM8/31/07 10:59:35 AM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 89

The built-in Windows version

of telnet is not especially good. In

particular, you won’t be able to see

what you type without setting the

localecho option, and the informative

“Trying . . . Connected” prompts do

not appear. You may want to try a

replacement such as Dave’s Telnet,

aka dtelnet (sourceforge.net/projects/

dtelnet).

!

telnet www.google.com 80Type:

The server will respond as follows
(on Windows, you may see only a
blank window):

Trying 64.233.161.147...

Connected to www.l.google.com.

Escape character is '̂]'.

GET /index.html HTTP/1.0

HOST: www.google.com

Type the following:

Press the Return key twice after this last
line. The server will then respond with:

HTTP/1.0 200 OK

Cache-Control: private

Content-Type: text/html; charset=ISO-8859-1

Server: GWS/2.1

Date: Thu, 15 Mar 2007 14:58:20 GMT

Connection: Close

8

After the header, the next thing you’ll see is a
lot of HTML that looks nowhere near as simple

as the normal Google web interface. This is the HTML of
the index page of Google. This is how browsers and web
servers talk to each other, using a text-based protocol
called the hypertext transport protocol (HTTP). The http://
at the beginning of every web address tells the browser to
communicate using this protocol. The stuff that precedes
the HTML is the HTTP header information. Browsers use
it to learn the types of files that follow, how the files are

encoded, and more. The end user never needs this infor-
mation, but it’s very useful in managing the flow of data
between client and server.

Remember the PHP time example from Chapter 1?
It should still be sitting on your own web server, at
www.example.com/time.php (replace www.example.com
with the address of your server, which may be 127.0.0.1
if it’s running on your local machine). Try getting this
file from the command line.

NOTE: If telnet doesn’t close on its own, you

may need to press Control-] to get to the telnet

prompt, where you can type q followed by

Enter to exit.

 Try It

You’ll be using HTTP/1.0 requests in your

code to keep things simple. Programs that

make HTTP/1.1 requests are required to accept

responses in chunks, which would complicate

how you handle those responses. You may still

see “HTTP/1.1” in the OK response you get

from the server.

8

MTT_Chapter3.indd Sec1:89MTT_Chapter3.indd Sec1:89 8/28/07 5:07:43 PM8/28/07 5:07:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

90 MAKING THINGS TALK

Even though the results of this approach aren’t
as pretty in a browser, it’s very simple to extract

the date from within a Processing program or even a
microcontroller program. Just look for the < character in
the text received from the server, read everything until you
get the > character, and you’ve got it.

HTTP requests don’t just request files. You can add
parameters to your request. If the file you’re requesting is
actually a program (like a CGI script), it can do something
with those parameters. To add parameters to a request,

add a question mark at the end of the request, and param-
eters after that. Here’s an example:

http://www.example.com/get-parameters.
php?name=tom&age=14

In this case, you’re sending two parameters, name and
age. Their values are “tom” and “14”, respectively. You can
add as many parameters as you want, separating them
with the ampersand (&).

<?php

/*

 Parameter reader

 Language: PHP

 Prints any parameters sent in using an HTTP GET command.

*/

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

// print out all the variables:

foreach ($_REQUEST as $key => $value)

 {

 echo "$key: $value
\n";

 }

// finish the HTML:

echo "</body></html>\n";

?>

Here’s a PHP script that
reads all the values sent

in via a request and prints them out:

Save this script to your server as get-
parameters.php and view it in a browser
using the URL shown earlier (you may
need to modify the path to the file if
you’ve put it in a subdirectory). You
should get a page that says:

name: tom

age: 14

 Test It

<?php

/* Date page

 Language: PHP

 Prints the date. */

// get the date, and format it:

$date = date("Y-m-d h:i:s\t");

// include the date:

echo "< $date >\n";

?>

Modify the PHP program
slightly, removing all the

lines that print any HTML, like so:

Now telnet into the web server on
port 80 and request the file from the
command line. Don’t forget to specify
the HOST in your request, as shown
earlier in the request to Google.

You should get a much more abbrevi-
ated response.

 Try It

MTT_Chapter3.indd Sec1:90MTT_Chapter3.indd Sec1:90 8/28/07 5:08:13 PM8/28/07 5:08:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 91

<?php

/*

 Age checker

 Language: PHP

 Expects two parameters from the HTTP request:

 name (a text string)

 age (an integer)

 Prints a personalized greeting based on the name and age.

*/

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

// read all the parameters and assign them to local variables:

foreach ($_REQUEST as $key => $value)

 {

 if ($key == "name") {

 $name = $value;

 }

 if ($key == "age") {

 $age = $value;

 }

 }

if ($age < 21) {

 echo "<p> $name, You're not old enough to drink.</p>\n";

} else {

 echo "<p> Hi $name. You're old enough to have a drink, but do ";

 echo "so responsibly.</p>\n";

}

// finish the HTML:

echo "</body></html>\n";

?>

Of course, because PHP is a
programming language, you can do
more than just print out the results.
Try this script:

Try requesting this script with the
same parameter string as the last
script, ?name=tom&age=14, and see
what happens. Then change the age to
something over 21.

NOTE: One great thing about PHP is that

it automatically converts ASCII strings of

numbers like “14” to their numerical values.

Because all HTTP requests are ASCII-based,

PHP is optimized for ASCII-based exchanges

like this.

8

You could also request it
from the command line like you
did earlier (be sure to include the
?name=tom&age=14 at the end of
the argument to GET, as in GET /get-
parameters.php?name=tom&age=14).
You’d get something similar, with the
HTTP header:

HTTP/1.1 200 OK

Date: Thu, 15 Mar 2007 15:10:51 GMT

Server: Apache

X-Powered-By: PHP/5.1.2

Vary: Accept-Encoding

Connection: close

Content-Type: text/html; charset=UTF-8

<html><head></head><body>

name: tom

age: 14

</body></html>

8

MTT_Chapter3.indd Sec1:91MTT_Chapter3.indd Sec1:91 8/28/07 5:08:34 PM8/28/07 5:08:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

92 MAKING THINGS TALK

How Email Works
Transferring mail also uses a client-server model. It
involves four applications: your email program and your
friend’s, and your email server (also called the mail host)
and your friend’s. Your email program adds a header to
your message to say that this is a mail message, who the
message is to and from, and what the subject is. Next, it
contacts your mail server, which then sends the mail on
to your friend’s mail server. When your friend checks her
mail, her mail program connects to her mail server and
downloads any waiting messages. The mail server is online
all the time, waiting for new messages for all of its users.

The transport protocol for mail is called SMTP, the Simple
Mail Transport Protocol. Just like HTTP, it’s text-based, and
you can use it from a command line. When a mail server
delivers a message, it has to figure out which servers are
responsible for handling incoming mail (for example mail.
example.com or smtp.example.com).

If you’d like to find the name of these servers, open
a command window/terminal program, and use the
nslookup command with the -q=mx option (this looks up
the mail server for the domain you specify):

C:\ >nslookup -q=mx gmail.com

Server: Unknown

Address: 192.168.254.1:53

Non-authoritative answer:

gmail.com MX preference = 50, mail exchanger = gsmtp163.google.com

gmail.com MX preference = 50, mail exchanger = gsmtp183.google.com

gmail.com MX preference = 5, mail exchanger = gmail-smtp-in.l.google.com

gmail.com MX preference = 10, mail exchanger = alt1.gmail-smtp-in.l.google.com

gmail.com MX preference = 10, mail exchanger = alt2.gmail-smtp-in.l.google.com

You could use any of the listed mail exchang-
ers to send email to a gmail.com recipient, but

don’t. If you accidentally say the wrong thing to someone
else’s mail server (mistyping one of the SMTP commands,
for example), your IP address might get reported to one
of the organizations that tracks outbreaks of malicious
software, and you could find yourself on a list of banned
IP addresses.

Also, if you’re connecting to the Internet through a cable
or DSL modem, it’s very likely that the SMTP port (25) is
tightly controlled. Most ISPs allow you to connect only to
their SMTP servers in order to prevent rogue users (and
malicious software) from sending spam messages directly
to recipients’ SMTP servers. So for this kind of testing, it’s
best to use the SMTP server that your ISP specifies for
outbound email rather than one of the mail exchangers
you got from nslookup.

To start with, open a telnet connection to your outgoing
SMTP server, like this:

telnet smtp.example.com 25

The server will respond something like this:

Trying 69.49.109.11...

Connected to mail.example.com.

Escape character is '̂]'.

220 mail.example.com ESMTP Sendmail 8.13.1/8.13.1; Thu, 16 Mar

2006 16:04:22 -0500

Now you have to say hello, or in SMTP syntax, HELO. You
must use the domain name of the email address you are
sending mail from, for example: HELO example.com

The server will respond:

250 example.com Hello, nice to meet you.

The dialogue goes on like this (when you see \r, press
Return or Enter instead):

You send: MAIL FROM: <you@example.com>\r

8

MTT_Chapter3.indd Sec1:92MTT_Chapter3.indd Sec1:92 8/28/07 5:08:53 PM8/28/07 5:08:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 93

Server responds: 250 Ok

You: RCPT TO: <friend@example.com>\r

NOTE: You might want to send mail to yourself the first time,

so you can check whether it works.

Server: 250 Ok

You: DATA\r

Server: 354 enter mail, end with "." on a line by itself

The server now expects you to send several lines of text,
starting with the subject, followed by the body of your email.
Different servers expect you to end the message in different
ways. Some look for a pair of carriage returns, but most
look for a period on a line by itself — in other words: \r.\r

Subject: test message

Hello,

This is a test.

Goodbye.

Press Return twice at the end of your message, or Return
followed by a period and then Return again, or whatever
else your mail server asked for on the line that started
with 354.

The server will respond like this: 250 Ok: queued as 12345

You respond with: QUIT\r

And the server says: 221 Bye

Finally, it closes the connection. Now check your mail
to see whether you got a message from yourself. If you
did, do the hokey pokey in celebration. If you didn’t get a
message, check your spam folder. Mail messages sent in
this bare-bones fashion may be misconstrued as spam
by eager-to-please email servers.

Because the whole mail transaction is text-based, you can
make this happen from any program you want, whether
it’s on your personal computer or a microcontroller, as
long as you’ve got an Internet connection.
X

Mail servers are pretty picky about what you type,

and if you mistype something, pressing Backspace or

Delete might confuse the mail server, even if everything

looks OK on your end. If in doubt, close the telnet

connection and try again from the beginning.

!

MTT_Chapter3.indd Sec1:93MTT_Chapter3.indd Sec1:93 8/28/07 5:09:17 PM8/28/07 5:09:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

94 MAKING THINGS TALK

A Networked Cat
Web browsing and email are all very simple
for humans, because we’ve developed
computer interfaces that work well with
our bodies. Keyboards work great with our
fingers, and mice glide smoothly under
our hands. It’s not so easy for a cat to
send email, though. This project attempts
to remedy that, and to show you how to
build your first physical interface for the
Internet.

MATERIALS

Between 2 and 4 force-sensing resistors
You have options: Interlink 400 series FSRs
(www.interlinkelec.com). You can get these from
Images Co (www.imagesco.com) or Trossen
Robotics (www.trossenrobotics.com). The Interlink
model 400 is shown in this project, but any of the
400 series will work well. FlexiForce from Parallax
(www.parallax.com), part number 30056, also
works well.
Between 2 and 4 10-kilohm resistors
available at many retailers, including from Digi-Key
(www.digikey.com) as part number 10K-QBK-ND,
Newark (www.newark.com) as part number
84N2322, and many others.
1 solderless breadboard such as Digi-Key
part number 438-1045-ND or Jameco
(www.jameco.com) part number 20601.
1 Arduino microcontroller module
(see Chapter 1)
1 personal computer
1 web camera (USB or FireWire)
1 webcam program
1 cat mat
1 cat A dog will do if you have no cat.
2 thin pieces of wood or thick cardboard,
about the size of the cat mat
1 soft pad, about the size of the cat mat
A thick hand towel or dish towel will do.

»

»

»

»

»
»
»
»
»
»

»

If you’re a cat lover, you know how cute they can be when
they curl up in the sun in their favorite spot for a nap. You
might find it useful in stressful times at work to think of
your cat, curled up and purring away. Wouldn’t it be nice
if the cat sent you an email when he lays down for a nap?
It’d be even better if you could then check in on the cat’s
website to see him at his cutest.

The system works like this: The force sensing resistors
are mounted under the cat mat and attached to a micro-
controller. The microcontroller is attached to a personal
computer. There’s also a camera attached to the personal
computer. When the cat lies down on the mat, its extra
weight will cause a change in the sensor readings. The
microcontroller then sends a signal to a program on the
personal computer, which calls a CGI script on a web
server. The CGI script sends an email to the cat owner,
notifying him that the cat is being particularly cute.
Meanwhile, a separate program is uploading pictures
of the cat to the web from a webcam attached to the
computer.

Making a Web Page for the CatCam
The new piece of software in this project is a program
to take pictures from the webcam and upload them.
There are many good shareware and freeware packages
available. A quick Google search for “webcam software”
and the name of your operating system will turn up
several. On Mac OS X, Evocam from Evological (www.
evological.com) is a good shareware package. If you use
it, please pay your shareware fees. On Windows, Fwink
(lundie.ca/fwink) is a good basic freeware package.

All of these applications share some common attributes.
There is a configuration menu or panel that lets you
choose your camera and control its brightness, contrast,
and other settings. There is also one for setting the
address of a server to upload to, and for specifying how
often to do so.

Any USB camera should work well on Windows. On Mac
OS X, you can also use FireWire cameras like Apple’s iSight
or Unibrain’s fire-I. Many of the USB cameras won’t work
too well on Mac OS X without a driver, but there’s a good
open-source driver called macam, available on Source-
Forge at webcam-osx.sourceforge.net, that works with a
number of the USB cameras. To use it with applications

Project 4

MTT_Chapter3.indd Sec1:94MTT_Chapter3.indd Sec1:94 8/28/07 5:09:40 PM8/28/07 5:09:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 95

other than the macam program itself, copy the file called
macam.component to the /Library/Quicktime directory of
your hard drive. Then open the webcam software you’re
using and your USB camera should pop up in the list of
available cameras.

Once you’ve got a camera image showing up onscreen,
open the FTP settings menu or the configuration panel.
Enter the address for your web server, the path to the
directory that you want to upload the file to, the filename,
and your user name and password. The software will
save a picture to a file and then upload it to the server.
There is also a setting to control how often a new image

is uploaded. Set it for every 15 seconds or so. Don’t set
it to update too frequently, or you’ll create too heavy a
load on the server, and viewers won’t even get a full image
before you’re overwriting it with a new one. Remember the
first rule of good networking habits: listen more than you
speak. Make sure your software isn’t uploading so fre-
quently that users can’t access the page.

Make a new directory on your server for this project, call it
catcam, then have the webcam software upload the image
to that directory with a clever filename like image.jpg. To
make sure it got there, open a web browser and see if you
can see the image in the directory you set the camera

MTT_Chapter3.indd Sec1:95MTT_Chapter3.indd Sec1:95 8/31/07 11:00:17 AM8/31/07 11:00:17 AM

www.it-ebooks.info

http://www.it-ebooks.info/

96 MAKING THINGS TALK

Figure 3-6
Evocam’s server panel (A) allows you to set the
net address to upload images to. The Refresh
panel (2) allows you to set the upload frequency.
On Windows, Fwink’s Settings panel (C) controls
both settings.

A B

C

MTT_Chapter3.indd Sec1:96MTT_Chapter3.indd Sec1:96 8/28/07 5:10:20 PM8/28/07 5:10:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 97

to upload to. For example, if your directory is at the root
of your website, then the image would be found at www.
example.com/catcam/image.jpg.

Once you know the image is there and visible, frame it with
a web page in the same directory, called index.html. Below

is a bare-bones page that will automatically refresh itself
in the user’s browser every ten seconds. The meta tag in
the head of the document causes the browser to refresh
the page every ten seconds. Feel free to make the page as
detailed as you want, but keep the meta tag in place.

<html>

<head>

 <title>noodles</title>

 <meta http-equiv="refresh" content="10">

</head>

<body>

 <center>

 <h2>Cat Cam</h2>

 </center>

</body>

</html>

Putting Sensors
in the Cat Mat

Now that the catcam is running, it’s time to make the
system that notifies you when the cat is there to be
viewed. How you do this depends on what kinds of force-
sensing resistors you use. Interlink’s 400 series FSRs
include a long, thin model with adhesive backing that
mounts nicely on any firm surface. Because this sensor
is very flat and has a relatively large surface area, it gives
good readings for this project. Mount the FSRs on strips of
firm yet flexible wood or cardboard (Masonite works well),
and you’ve got a great sensor.

If you’re using smaller FSRs from another company like
CUI or FlexiForce, you’ll need to make a larger sensing
pad. First, cut two pieces of wood or firm cardboard
slightly smaller than the cat’s mat. Don’t use a really
thick or hard piece of wood. You just need something
firm enough to provide a relatively inflexible surface for
the sensors. Attach the sensors to the corners of one of
the pieces of wood or cardboard. Sandwich the sensors
between the two boards. Tape the two boards together
at the edges loosely, so that the weight of the cat can
press down to affect the sensors. If you tape too tightly,
the sensors will always be under force; too loose, and

the boards will slide around too much and make the cat
uncomfortable. If the sensors don’t give enough of a
reaction, get some little rubber feet, available at any elec-
tronics store, and position them on the panel opposite
the sensors so that they press down on the sensors. If the
wood or cardboard panels have some flex in them, position
an extra rubber foot or two at the center of the panel to
reduce the flex. Figures 3-7, 3-8, and 3-9 show a working
version of the sensor board.

Next, attach long wires to the force-sensing resistors to
reach from the mat to the nearest possible place to put the
microcontroller module. Connect the sensors to an analog
input of the microcontroller using the voltage divider
circuit shown in Figure 3-9. Because you don’t care which
of the sensors gets triggered, this circuit makes it possible
to react to input from any of the four of them.
X

8

MTT_Chapter3.indd Sec1:97MTT_Chapter3.indd Sec1:97 8/28/07 5:11:12 PM8/28/07 5:11:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

98 MAKING THINGS TALK

Figure 3-7
Because the force-sensing resistors melt easily, I used 30AWG wire
wrap instead of solder. Wire-wrapping tools are inexpensive and
easy to use, but make a secure connection. After wire wrapping,
I insulated the connections with heat shrink.

Figure 3-8
Cat-sensing panel. The four FSRs are wired in parallel. Note the
rubber feet that press down more precisely on the sensors. Make
sure to insulate the connections before taping the panels together.
The connector is just a pair of female wire wrap headers.

MTT_Chapter3.indd Sec1:98MTT_Chapter3.indd Sec1:98 8/28/07 5:47:24 PM8/28/07 5:47:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 99

MTT_Chapter3.indd Sec1:99MTT_Chapter3.indd Sec1:99 8/28/07 5:47:56 PM8/28/07 5:47:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

100 MAKING THINGS TALK

Figure 3-9
The cat-sensing circuit.
Because all of the force-
sensing resistors are all
wired in parallel, there are
only two connections for
all of them. This circuit is
simple enough that you
can just solder a resistor to
a header pin to make the
connection to ground.

AREF

GND

D13

D12

D11/PWM2

D10/PWM1

D9/PWM0

D8

D7

D6

D5

D4

D3

D2

Digital1/TX

Digital0/RX

+5V

Gnd

Gnd

+9V

Analog0

A1

A2

A3

A4

A5

Arduino
Module

1KΩ

4 force-sensing
resistors

MTT_Chapter3.indd Sec1:100MTT_Chapter3.indd Sec1:100 8/28/07 5:53:06 PM8/28/07 5:53:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 101

/*

 Analog sensor reader

 Language: Arduino/Wiring

 Reads an analog input on Analog in 0, prints the result

 as an ASCII-formatted decimal value.

 Connections:

 FSR analog sensors on Analog in 0

*/

int sensorValue; // outgoing ADC value

void setup()

{

 // start serial port at 9600 bps:

 Serial.begin(9600);

}

void loop()

{

 // read analog input:

 sensorValue = analogRead(0);

 // send analog value out in ASCII decimal format:

 Serial.println(sensorValue, DEC);

 // wait 10ms for next reading:

 delay(10);

}

Once you’ve got the
sensor panel together

and connected to the microcontroller,
run the following on the Arduino or
Wiring board to test the sensors:

To see the results, open the Serial
Monitor at 9600 bits per second. Now
position the cat on the panel and note
the number change. This can be tricky,
as cats are difficult to command. You
may want to put some cat treats or
catnip on the pad to encourage the cat
to stay there. When you’re satisfied
that the system works and that you can
see a significant change in the value
when the cat sits on the panel, you’re
ready to move on to the next step.

NOTE: Once you’ve got the serial connec-

tion between the microcontroller and the

computer working, you might want to add in

the Bluetooth radio from the Monski pong

project in Chapter 2. It will make your life

much easier if your computer doesn’t have

to be tethered to the cat mat in order to

program.

/*

 Serial String Reader

 Language: Processing

 Reads in a string of characters until it gets a linefeed (ASCII 10).

 Then converts the string into a number.

 */

import processing.serial.*;

int linefeed = 10; // linefeed in ASCII

Serial myPort; // the serial port

int sensorValue = 0; // the value from the sensor

void setup() {

 size(400,300);

 // list all the available serial ports

 println(Serial.list());

As the micro-
controller can’t

connect to the Internet on its own,
you’ll need another computer for
that. Your computer and Processing
will do the job well. Here’s a Process-
ing program similar the Monski pong
program from Chapter 2 to read
the sensors:

»

 Test It

 Connect It

MTT_Chapter3.indd Sec1:101MTT_Chapter3.indd Sec1:101 8/28/07 5:53:43 PM8/28/07 5:53:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

102 MAKING THINGS TALK

Continued from previous page.

 // I know that the first port in the serial list on my Mac is always my

 // Arduino, so I open Serial.list()[0]. Open whatever port you're using

 // (the output of Serial.list() can help; the are listed in order

 // starting with the one that corresponds to [0]).

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil(linefeed);

}

void draw() {

 // twiddle your thumbs

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 // trim off the carriage return and convert the string to an integer:

 sensorValue = int(trim(myString));

 // print it:

 println(sensorValue);

 }

}

You don’t want Processing sending a
message constantly, because you’d get
several thousand emails every time the
cat sits on the mat. Instead, you want
to recognize when the cat’s there, send
an email, and don’t send again until
he’s left and returned again. If he jumps
on and off and on again in a minute or
less, you don’t want to send again.

What does that look like in sensor
terms? To find out, you need to do one
of two things: either get the cat to jump
on and off the mat on cue (difficult to
do without substantial bribery, using
treats or a favorite toy) or weigh the
cat and use a stand-in of the same
weight. The advantage to using the cat
is that you can see what happens when
he’s shifting his weight, preparing the
bed by kneading it with his claws, and
so forth. The advantage of the stand-in
weight is that you don’t have to herd
cats to finish the project.

int graphPosition = 0; // the horizontal position of the latest

 // line to be drawn on the graph

If your system is
working correctly,

you should notice a difference of
several points in the sensor readings
when the cat gets on the mat. It helps
to graph the results so you can see
clearly what the difference looks like.
To do that, add an extra variable to the
variable list at the beginning of your
Processing program:

 Refine It

MTT_Chapter3.indd Sec1:102MTT_Chapter3.indd Sec1:102 8/28/07 5:54:08 PM8/28/07 5:54:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 103

 // print it:

 println(sensorValue);

 drawGraph();

 }

void drawGraph() {

 // adjust this formula so that lineHeight is always less than

 // the height of the window:

 int lineHeight = sensorValue /2;

 // draw the line:

 stroke(0,255,0);

 line(graphPosition, height, graphPosition, height - lineHeight);

 // at the edge of the screen, go back to the beginning:

 if (graphPosition >= width) {

 graphPosition = 0;

 background(0);

 }

 else {

 graphPosition++;

 }

}

Then add this method at the end
of your program:

8

Call this method from the
serialEvent() method, right after you
print the number:

8

Figure 3-10
Output of the sensor graphing program.

When you run the program, you’ll see a graph
of the sensor values. When the cat jumps on

the mat, you should see a sudden increase, and when he
jumps off, you’ll see the graph decrease. You’ll also see
any small changes, which you might need to filter out. If
the changes are small relative to the difference between
the two states you’re looking for, you can ignore them.
You have enough knowledge to start defining the cat’s
presence on the mat as an event, using the sensor values.
To do this, pick a threshold number in between the two
states. When the sensor reading goes above the threshold,
send a message that he’s in place. When the sensor value
goes below the threshold, the cat has left the mat, and the
event is over. Once you’ve sent a message, you don’t want
to send another one right away, even if the cat gets off the
mat and back on. Decide on an appropriate interval, wait
that long, and start the whole process again.

MTT_Chapter3.indd Sec1:103MTT_Chapter3.indd Sec1:103 8/28/07 5:54:28 PM8/28/07 5:54:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

104 MAKING THINGS TALK

 // draw the line:

 if (catOnMat) {

 // draw green:

 stroke(0,255,0);

 }

 else {

 // draw red:

 stroke(255,0,0);

 }

int prevSensorValue = 0; // the previous sensor reading

boolean catOnMat = false; // whether the cat's on the mat;

int threshold = 320; // above this number, the cat is on the mat.

Add the following new variables to
the beginning of your program:

8

 if (sensorValue > threshold) {

 // if the last reading was less than the threshold,

 // then the cat just got on the mat.

 if (prevSensorValue <= threshold) {

 catOnMat = true;

 sendMail();

 }

 } else {

 // if the sensor value is less than the threshold,

 // and the previous value was greater, then the cat

 // just left the mat

 if (prevSensorValue >= threshold) {

 catOnMat = false;

 }

 }

 // save the sensor value as the previous value

 // so you can take new readings:

 prevSensorValue = sensorValue;

Then put this code in your draw()
method, which Processing runs in a
continuous loop. So far, you haven’t put
any code in the draw() method, so this
is the only code there:

8

 // draw the line:

 stroke(0,255,0);

Make the following change at the
beginning of the drawGraph() method;
change this:

8

void sendMail() {

 println("This is where you'd send a mail.");

}

Finally, add a method that sends
mail. For now, it will just print a
placeholder to the message window.
After the next section, you’ll write code
to make it send mail for real. Add this
method to the end of your program:

8

to this:8

MTT_Chapter3.indd Sec1:104MTT_Chapter3.indd Sec1:104 8/28/07 5:54:49 PM8/28/07 5:54:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 105

 if (sensorValue > threshold) {

 // if the last reading was less than the threshold,

 // then the cat just got on the mat.

 if (prevSensorValue <= threshold) {

 // wait a a bit, then check again to see whether the reading

 // is still above the threshold:

 delay(100);

 if (sensorValue > threshold) {

 catOnMat = true;

 sendMail();

 }

 }

 } else {

 // if the sensor value is less than the threshold,

 // and the previous value was greater, then the cat

 // just left the mat

 if (prevSensorValue >= threshold) {

 catOnMat = false;

 }

 }

When you run the program, the
graph should draw in red when the
cat’s off the mat, and green when it’s
on. Sometimes, if the cat takes his time
getting settled, you can get several mail
messages in a second or two. You may
notice that the graph switches from red
to green several times as it crosses the
threshold. This happens because the
sensor fluctuates slightly, due to elec-
trical noise. Not all sensors are noisy,
and you may be lucky and find out that
yours isn’t. If it is, you can smooth the
transition out slightly by changing your
code. Change the first block of the
draw() method to read as follows:

When you’ve got very noisy readings,
this method, called debouncing, is very
useful. But one hundred milliseconds is
a long time in sensor terms, and you’re
changing the whole system’s reaction
time by adding this debounce delay.
You may even notice the graph pausing
slightly at the transitions. Adjust the
delay to be as short as possible and
still deliver reliable results.

8

int timeThreshold = 1; // minimum number of minutes between emails

int timeLastSent[] = {

 hour(), minute() - 1 }; // time the last message was sent

Every time the
program sends a mail

message, it should take note of the
time, and not send a message again no
matter what, unless the time threshold
has passed. To make this happen, add
a couple new variables at the beginning
of the program:

NOTE: Even with the debounce routine in

your program, it’s possible to get several

mail messages a minute, if the cat is fickle.

What’s needed is a minimum time threshold

between mail messages.

 Tame It

MTT_Chapter3.indd Sec1:105MTT_Chapter3.indd Sec1:105 8/28/07 5:55:09 PM8/28/07 5:55:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

106 MAKING THINGS TALK

void sendMail() {

 // calculate the current time in minutes:

 int[] presentTime = {hour(), minute()};

 // print the sensor value, the current time,

 // and the last time you sent a message, separated by tabs:

 print(sensorValue + "\t");

 print(presentTime[0] + ":" + presentTime[1] +"\t");

 println(timeLastSent[0] + ":" + timeLastSent[1]);

 // if you're still in the same hour as the last message,

 // then make sure at least the minimum number of minutes has passed:

 if (presentTime[0] == timeLastSent[0]) {

 if (presentTime[1] - timeLastSent[1] >= timeThreshold) {

 println("This is where you'd send a mail.");

 // take note of the time this message was sent:

 timeLastSent[0] = hour();

 timeLastSent[1] = minute();

 }

 }

 // If the hour has changed since the last message,

 // then the difference in minutes is a bit more complex.

 // Use != rather than > to make sure that the shift

 // from 23:59 to 0:00 is covered as well:

 if (presentTime[0] != timeLastSent[0]) {

 // calculate the difference in minutes:

 int minuteDifference = (60 - timeLastSent[1]) + presentTime[1];

 if (minuteDifference >= timeThreshold) {

 println("This is where you'd send a mail.");

 // take note of the time this message was sent:

 timeLastSent[0] = hour();

 timeLastSent[1] = minute();

 }

 }

}

Sending Mail from the Cat
Once you’ve got the Processing program recognizing when
the cat lies on the mat, you need to get it to send an email.
You could write a program to send an email directly from
Processing, using the text strings described in the section
on email at the beginning of this chapter, but it’s easier to
send mail using PHP. The next section shows you how to

pass the message on from Processing to PHP to do that.
The same technique shown here can be used to call any
PHP script from Processing. First, you need to program
PHP to send a mail message. The PHP script below takes
advantage of PHP’s ability to read parameters from the
HTTP request:

Now modify the sendMail()
method as follows:

Once you’re sure it works, adjust time-
Threshold to an appropriate minimum
number of minutes between emails.

8

MTT_Chapter3.indd Sec1:106MTT_Chapter3.indd Sec1:106 8/28/07 5:55:29 PM8/28/07 5:55:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 107

<?php

/*

 Cat On Mat

 Language: PHP

 Expects a parameter called SensorValue, an integer.

 Prints a custom message depending on the value of SensorValue.

*/

$threshold = 320; // minimum sensor value to trigger action

// print the beginning of the HTML page:

echo "<html><head></head><body>\n";

// read all the parameters and assign them to local variables:

foreach ($_REQUEST as $key => $value)

 {

 if ($key == "sensorValue") {

 $sensorValue = $value;

 }

 }

// respond depending on the sensor value:

if ($sensorValue > $threshold) {

 echo "<p> The cat is on the mat.</p>\n";

} else {

 echo "<p> the cat is not on the mat.</p>\n";

}

// finish the HTML:

echo "</body></html>\n";

?>

In order for the PHP scripts to run, you’ll need

to install them on a web server that supports PHP.

There are many web hosting companies with

inexpensive (less than $10 a month) web hosting

plans that support PHP.

8

Save it to your server with the name cat-script.
php. Test it from a browser with this HTTP

request, using different values for sensorValue. Use a URL
similar to the one shown here, replacing www.example.
com with your server name, and adjusting the path to the
script as needed: http://www.example.com/catcam/cat-
script.php?sensorValue=12. Any value above 320 should
result in a message that the cat is on the mat. When you’re
satisfied that it works, change your script to make it send
an email (change yourname@example.com to your real
email address), as shown in the code section below.

Call the script again and then check your mail to see
whether the message went through. Some mail servers
may require that you send mail only from your proper
account name. If that’s the case, replace cat@example.
com in the send_mail function with your account name
on the server that the script is running on.

8

This value should match the value of the

threshold variable from the Processing sketch.

8

MTT_Chapter3.indd Sec1:107MTT_Chapter3.indd Sec1:107 8/28/07 5:55:48 PM8/28/07 5:55:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

108 MAKING THINGS TALK

<?php

/*

 Mail sender

 Language: PHP

 Expects a parameter called SensorValue, an integer

 Sends an email if sensorValue is above a threshold value.

*/

$threshold = 320; // minimum sensor value to trigger action.

 // change this value to whatever your sensor threshold is.

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

// read all the parameters and assign them to local variables:

foreach ($_REQUEST as $key => $value)

 {

 if ($key == "sensorValue") {

 $sensorValue = $value;

 }

 }

if ($sensorValue > $threshold) {

 $messageString = "The cat is on the mat at http://www.example.com/catcam.";

 echo $messageString;

 send_mail("yourname@example.com", "the cat", $messageString);

} else {

 echo "<p> the cat is not on the mat.</p>\n";

}

// finish the HTML:

echo "</body></html>\n";

end;

// End of the main script. Anything after here won't get run

// unless it's called in the code above this line.

//

function send_mail($to, $subject, $message) {

 $from = "cat@example.com";

 mail($to, $subject, $message, "From: $from");

}

?>

You’ll need to change this URL.8

You’ll need to change these email
addresses.
8

Now that you’re sending emails from a

program, you need to be very careful about how

often it happens. You really don’t want 10,000

messages in your inbox because you accidentally

called the mail command in a repeating loop.

!

8

You’ll need to change this number.8

MTT_Chapter3.indd Sec1:108MTT_Chapter3.indd Sec1:108 8/28/07 5:59:14 PM8/28/07 5:59:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 109

/*

 HTTP sender

 Language: Processing

 Uses the Processing net library to make an HTTP request.

*/

import processing.net.*; // gives you access to the net library

Client client; // a new net client

boolean requestInProgress; // whether a net request is in progress

String responseString = ""; // string of text received by client

void setup()

{

 // open a connection to the host:

 client = new Client(this, "example.com", 80);

 // send the HTTP GET request:

 client.write("GET /catcam/cat-script.php?sensorValue=321 HTTP/1.0\r\n");

 client.write("HOST: example.com\r\n\r\n");

 // note that you've got a request in progress:

 requestInProgress = true;

}

void draw()

{

 // available() returns how many bytes have been received by the client:

 if (client.available() > 0) {

 // read a byte, convert it to a character, and add it to the string:

 responseString +=char(client.read());

 // add to a line of |'s on the screen (crude progress bar):

 print("|");

 }

 // if there's no bytes available, either the response hasn't started yet,

 // or it's done:

 else {

 // if responseString is longer than 0 bytes, the response has started:

 if(responseString.length() > 0) {

 // you've got some bytes, but now there's no more to read. Stop:

 if(requestInProgress == true) {

 // print the response:

 println(responseString);

You’ll need to change the hostnames
and the path.
8

Putting It All Together
Finally, it’s time to get Processing to call the

PHP script and complete the connection from the cat to
your inbox. To do this, you’re going to use the net library in
Processing. Like the serial library, it adds some functions
to the core of Processing. The serial library allowed you to

access the serial ports, and the net library allows you to
make network connections. Here’s an example that uses
the net library to make an HTTP call to the PHP script you
just wrote. Use it to confirm that Processing can contact
your server:

8

»

MTT_Chapter3.indd Sec1:109MTT_Chapter3.indd Sec1:109 8/28/07 5:59:36 PM8/28/07 5:59:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

110 MAKING THINGS TALK

If you check your mail, you should
have a message from the PHP script
indicating that the cat is on the mat.
Once that’s working, it’s time to combine
this sketch with the cat-sensing sketch
shown earlier. First, add the net library
import right after the serial library
import:

8 import processing.net.*; // gives you access to the net library

Then add the global variables from
the HTTP client script to the variable
list at the beginning of the sensing
script:

8 // HTTP client variables:

Client client; // a new net client

boolean requestInProgress = false; // whether a net request is in progress

String responseString = ""; // string of text received by client

To send the mail and
check the response from
the server, add two new
methods at the end of the
sketch, makeHTTPCall()
and checkNetClient()
(be sure to change the
references to example.
com and the path of the
requestString):

8 void makeHTTPCall() {

 // do this only if you're not already in the middle of an HTTP request:

 if (requestInProgress == false) {

 // Open a connection to the host:

 client = new Client(this, "example.com", 80);

 // form the request string:

 String requestString = "/catcam/cat-script.php?sensorValue=" + sensorValue;

 // send the HTTP GET request:

 client.write("GET " + requestString + " HTTP/1.0\n");

 client.write("HOST: example.com\n\n");

 // note that you've got a request in progress:

 requestInProgress = true;

 }

}

void checkNetClient() {

 // available() returns how many bytes have been received by the client:

 if (client.available() > 0) {

 // read a byte, convert it to a character, and add it to the string:

 responseString +=char(client.read());

You’ll need to change
the hostnames and
the path.

8

»

Continued from previous page.

 // note that the request is over:

 requestInProgress = false;

 // reset the string for future requests:

 responseString = "";

 }

 }

 }

}

MTT_Chapter3.indd Sec1:110MTT_Chapter3.indd Sec1:110 8/28/07 5:59:56 PM8/28/07 5:59:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 111

 // add to a line of |'s on the screen (crude progress bar):

 print("|");

 }

 // if there are no bytes available, either the response hasn't started yet,

 // or it's done:

 else {

 // if responseString is longer than 0 bytes, the response has started:

 if(responseString.length() > 0) {

 // you've got some bytes, but now there's no more to read. Stop:

 if(requestInProgress == true) {

 // print the response:

 println(responseString);

 // note that the request is over:

 requestInProgress = false;

 // reset the string for future requests:

 responseString = "";

 }

 }

 }

}

Call makeHTTPCall() in the
sendMail() method, in the two places
where you’re currently printing out
“This is where you’d send a mail,”
like so:

8 println("This is where you'd send a mail.");

 makeHTTPCall();

Call checkNetClient() at the end
of the draw() method like so:

Now run the sketch. When the sensor
reading goes above the threshold, if an
appropriate number of minutes has
passed, you should see a mail message
go out. Now the cat can send you email
when he’s curled up in his bed.

8 if (requestInProgress == true) {

 checkNetClient();

 }

Continued from opposite page.

MTT_Chapter3.indd Sec1:111MTT_Chapter3.indd Sec1:111 8/28/07 6:01:34 PM8/28/07 6:01:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

112 MAKING THINGS TALK

Figure 3-11
The finished cat bed (at
right) and a detail of the
sensor pad, which sits
under the cat bed itself. A
bamboo jewelry box from a
nearby gift store houses the
electronics, and matches
the furniture. The USB cable
runs to the computer. Make
sure to secure the wires
throroughly, or the cat may
try to chew on them.

Conclusion

The Internet is actually a network of networks, built up
in multiple layers. Successful network transactions rely
on there being at least one reliable route through the
Net from client to server. Client and server applications
exchange strings of text messages about the files they
want to exchange, transferring their files and messages
over network ports. To communicate with any given server,
you need to know its message protocols. When you do,
it’s often possible to test the exchange between client and
server using a telnet session and typing in the appropriate

messages. Likewise, it’s possible to write programs for a
personal computer or microcontroller to send those same
messages, as you saw in the cat bed project. Now that you
understand how simple those messages can be, you’ll get
the chance to do it without a personal computer in the
next chapter, connecting a microcontroller to the Internet
through a serial-to-Ethernet converter that’s not much
bigger than the microcontroller itself.
X

Now you’ve got an understanding of the structure of the Internet, and how
networked applications do their business.

MTT_Chapter3.indd Sec1:112MTT_Chapter3.indd Sec1:112 8/28/07 6:01:57 PM8/28/07 6:01:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A MORE COMPLEX NETWORK 113

MTT_Chapter3.indd Sec1:113MTT_Chapter3.indd Sec1:113 8/28/07 6:02:47 PM8/28/07 6:02:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

114 MAKING THINGS TALK

MTT_Chapter4.indd Sec1:114MTT_Chapter4.indd Sec1:114 8/24/07 4:20:04 PM8/24/07 4:20:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Look, Ma, No Computer!
Microcontrollers on
the Internet
The first response that comes to many people’s minds after building

a project like the networked cat bed in Chapter 3 is: “Great, but

how can I do this without needing to connect to my computer?”

It’s cumbersome to have to attach the microcontroller to a laptop

or desktop computer just to enable it to connect to the Internet.

After all, as you saw in Chapter 3, Internet message protocols are just

text strings, and microcontrollers are good at sending short text

strings. So in this chapter, you’ll learn how to connect a microcontroller

to the internet through a device that’s not much more complex than

the Bluetooth radio modem you used in Chapter 2.

4
MAKE: PROJECTS

Uncommon Projects' YBox (http://ybox.tv) puts RSS feeds on your TV using an Xport serial-to-ethernet
module and a Propeller microchip. Image courtesy of Uncommon Projects.

MTT_Chapter4.indd Sec1:115MTT_Chapter4.indd Sec1:115 8/31/07 11:01:23 AM8/31/07 11:01:23 AM

www.it-ebooks.info

http://www.it-ebooks.info/

116 MAKING THINGS TALK

Introducing Network Modules

There are many such modules on the market, with varying
prices and features. Just as you can choose how technical
you want to get when you pick a microcontroller platform,
you can also choose your technical level when you pick a
network controller. Some modules, like Rabbit Semicon-
ductor’s RabbitCore processors, come with all the source
code for a TCP/IP stack, and expect you to modify it for
your needs and program the device yourself. This module
is powerful, but has a steep learning curve. Others have a
stack programmed into their firmware, and present you
with a serial, telnet, or web-based interface. These are
much simpler to use. The web interface gives you access
from the browser of your personal computer; the telnet
interface gives you access from a server or your personal
computer; and the serial interface gives you access from a
microcontroller.

In the past few years, a wide array of commercial appli-
ances has come on the market that can connect directly
to the Internet without the aid of a personal computer.
Companies like D-Link, Sony, Axis, and others make
security cameras with network interfaces, both Ethernet
and Wi-Fi. Ceiva, eStarling, and others make picture
frames with Wi-Fi connections to which you can upload
images from the Net. Ambient Devices makes lamps and
displays of various sorts that connect to the Net and
change their appearance based on changes in information
like stock market data, weather, and other scalar quanti-
ties. Cable television set top boxes are computers in a
small box, capable of routing streams of audio, video, and
data all at the same time. In fact, the operating system in
your set-top box might even be a variation of the same
Linux operating system that’s running on your network

It’s possible to write a program for a microcontroller that can manage all the steps of
network communication, from the physical and data connections to the network address
management to the negotiation of protocols like SMTP and HTTP. A code library that
encompasses all the layers needed for network connections is called a network stack, or
TCP/IP stack. However, it’s much easier to use a network interface module to do the job.

provider’s web hosting machine. Home alarm systems are
made up of networks of microcontrollers that talk among
themselves, with one that can communicate with a central
server, usually over phone lines using a modem.

All of these appliances engage in networked communica-
tion. The simplest ones handle only one transaction at
a time, requesting information from a server and then
waiting for a response, or sending a single message in
response to some physical event. Others manage multiple
streams of communication at once, allowing you to surf
the Web while watching television. The more processing
power a given device has, the more it can handle. For many
applications, however, you don’t need a lot of processing
power, because the device you’re making has only one or
two functions.
X

The projects in this chapter, and some of the others
later in the book, use a family of network modules from
Lantronix: the Micro, the XPort, the WiMicro, and the
WiPort. These are serial-to-Ethernet modems; as you’ll see
shortly, they work much like the Bluetooth modems you
used in Chapter 2 but have a different serial protocol. The
Micro and the XPort require a wired connection on both
the serial side and the Ethernet side. The WiMicro and
WiPort are wireless counterparts of the Micro and XPort,
respectively. Of the four, the XPort is the least expensive
and the smallest, about the size of a normal Ethernet
jack that you’d find in a computer. It’s not designed to be
used with a solderless breadboard, though, so you have
to make your own printed circuit board for it, or buy one.
The WiPort also requires you to make your own board. The
Micro and the WiMicro are in the middle of the price range,
and both have a more convenient physical interface that
can be connected to a breadboard with relative ease.
X

MTT_Chapter4.indd Sec1:116MTT_Chapter4.indd Sec1:116 8/24/07 4:20:53 PM8/24/07 4:20:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 117

Figure 4-1
The Lantronix Micro (left), XPort (center), and
WiMicro (left) serial-to-Ethernet modules. The
WiPort is the square silver part of the WiMicro.

Figure 4-2
Pin configurations for the Micro. The configuration
for the WiMicro is identical.

GND
TX

DCD
DTR
RES
NC

+5V
RX
CTS
RTS
NC
NC

MTT_Chapter4.indd Sec1:117MTT_Chapter4.indd Sec1:117 8/24/07 4:21:24 PM8/24/07 4:21:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

118 MAKING THINGS TALK

Hello Internet!
The first thing you need to do in order
to use any network module is to get it to
connect to the network and to return any
messages it gets through its serial port.
That’s the goal of this project.

MATERIALS

1 Lantronix embedded device server
Available from many vendors, including Symmetry
Electronics (www.semiconductorstore.com) as part
number CO-E1-11AA (Micro) or WM11A0002-01
(WiMicro), or XP1001001-03R (XPort)
1 solderless breadboard such as Digi-Key part
number 438-1045-ND, Jameco (www.jameco.com)
part number 20601
1 micro-to-breadboard connector
1 USB-to-serial circuit such as the FT232RL or
RS-232-to-serial circuit such as the MAX3323, as
shown in Chapter 2. Use the second of these if you
don’t have a spare USB port and plan to use an RS-
232 serial port. Otherwise, use the first one.
1 7805 5V voltage regulator
1 10µF capacitor
1 1µF capacitor

For micro-to-breadboard connector:
Option 1 A quick-and-dirty adapter:

2 rows of right-angle male headers
(such as Samtec TSW series, TSW-112-08-T-S).
Most retailers carry some version of these.
Jameco’s equivalent is part number 103351.
2 rows of straight female headers
(such as Samtec SSA series, SSA-106-S-T). Most
retailers carry some version of these. Jameco’s
equivalent is part no. 308567. I prefer the Samtec
ones, because they’re easier to break off.

Option 2 A DIY ribbon cable adapter:
14-pin IDC DIP plug Jameco part number
42658
IDC 14-pin socket Jameco part number 153948
14-conductor rainbow-colored ribbon cable
Jameco part number 105672

»

»

»
»

»
»
»

»

»

»

»
»

Making the Circuit
All of the Lantronix modules shown in Figure 4-1 have at
least the following connections:

• Power
• Ground
• Serial receive (RX)
• Serial transmit (TX)
• Reset

These are the connections you’ll use to connect to your
microcontroller. The additional pins are for things like a
second serial port (Micro, WiPort, and WiMicro) or user-
configurable I/O pins (XPort), which you won’t need for
the projects in this book. As you might expect by now,
serial receive (RX) connects to the microcontroller’s serial
transmit (TX), and vice versa. Figure 4-2 shows the pin
configurations for the Micro. This chapter features the
Micro, and later chapters feature the XPort. Once you know
the circuit for each, they can be used interchangeably
for most of the projects in this book. All of the Lantronix
modules use virtually the same firmware interface settings.

Before connecting the Lantronix module to a micro-
controller, you should configure it and confirm that the
module is communicating properly through its serial port.
The easiest way to do this is to connect it to a personal
computer serially. You can use the FT232RL USB-to-serial
module, or the MAX3323 RS-232-to-TTL serial circuit from
Chapter 2. Figure 4-3 shows these circuits connected to
the Micro module. The Micro module is shown with its own
power supply, because it draws more current than the USB
connection can supply.

To connect the Micro to the breadboard, you have two
choices: you can make a ribbon cable, or you can make a
connector out of header pins. You can use a ribbon cable
with a connector to match the Micro’s two rows of pins.
This type of connector is called an IDC connector. In a
pinch, you can pull a two-row ribbon connector out of an
old PC, chop off one end, solder headers onto the other
end, and use that. You can also buy IDC connectors and
IDC DIP sockets, as listed earlier. Assembling these con-
nectors is tricky without an IDC crimp tool, however. As
an alternative, you can solder two rows of straight female
header sockets to two rows of right-angle male header
pins. Figure 4-4 shows how to align the header pins and
sockets for soldering.

Project 5

MTT_Chapter4.indd Sec1:118MTT_Chapter4.indd Sec1:118 8/24/07 4:22:17 PM8/24/07 4:22:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 119

Figure 4-3
The Lantronix Micro connected to an FTDI USB-to-serial
module. The circuit is shown with and without the micro
attached, to show the wiring underneath. This same circuit
can be used for the Micro or WiMicro modules. Note that the
FTDI chip doesn’t connect to +5V. It takes its power from
the USB connection. Only a common ground is needed.

MTT_Chapter4.indd Sec1:119MTT_Chapter4.indd Sec1:119 8/24/07 4:30:19 PM8/24/07 4:30:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

120 MAKING THINGS TALK

Figure 4-4
Soldering straight female
headers to right-angle
male headers. Slip the
female sockets onto your
module. The male header
pins should now slip into
a breadboard nicely, as
shown in the second
image, where the finished
header assembly is
used to mount the Micro
module on a breadboard.

MTT_Chapter4.indd Sec1:120MTT_Chapter4.indd Sec1:120 8/24/07 4:31:50 PM8/24/07 4:31:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 121

Configuring the Micro
Once you’ve got the circuit assembled, connect it to your
PC, connect it to power, and open the serial port using
your serial terminal program: GNU screen in Terminal on
Mac OS X or Linux/Unix, PuTTY on Windows (see Chapter
2 for instructions on finding your serial ports). Press the
reset button of the Micro module, hold down the x key, and
release the reset button. This step forces the Lantronix

Web Server is enabled

ECHO is disabled

Enhanced Password is disabled

*** Channel 1

Baudrate 9600, I/F Mode 4C, Flow 00

Port 10001

Remote IP Adr: --- none ---, Port 00000

Connect Mode : D4

Disconn Mode : 00

Flush Mode : 00

*** Expert

TCP Keepalive : 45s

ARP cache timeout: 600s

Change Setup:

 0 Server configuration

 1 Channel 1 configuration

 5 Expert settings

 6 Security

 7 Factory defaults

 8 Exit without save

 9 Save and exit Your choice ?

Press Enter, and you’ll get the
menu shown at the right:

This menu allows you to configure all
the settings of the module. The first
menu choice controls the network
settings. The second controls the
serial settings. The others configure
advanced settings, which you can leave
at the default. Start by configuring the
network settings. Type 0, then press
Enter. Then respond as shown below,
entering an available IP address on
your network.

NOTE: The Lantronix module can find its

own address using DHCP, but if you don’t

know its address, you have no way of

contacting it from other devices on the

same network. That’s why you’re entering

a fixed address for the module. Pick an

address that you know is available on

your network. If you’re using it on a home

network, or any private network, use an

address appropriate to the local network.

8

IP Address : (0) 192.(0) 168.(0) 1.(0) 20 This is the address that the
module will have on the network.

NOTE: Sample responses are shown in blue

here. Change the numbers as needed for

your network.

8

Set Gateway IP Address (Y) Y

Gateway IP addr (0) 192.(0) 168.(0) 1.(0)1

Next you’ll set the address of the
router through which your module
contacts the rest of the Net. Fill in the
router’s IP address:

8

module to go into setup mode. The module should return
a configuration menu, like the following:

*** Lantronix Universal Device Server ***

Serial Number 6643485 MAC address 00204A66B9DD

Software version 05.2 (030423) LTX

Press Enter to go into Setup Mode

MTT_Chapter4.indd Sec1:121MTT_Chapter4.indd Sec1:121 8/24/07 4:32:22 PM8/24/07 4:32:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

122 MAKING THINGS TALK

When a router assigns addresses to devices
connected to it, it masks part of the address

space so that those devices can use only addresses in the
same subnet as the router itself. For example, if the router
is going to assign only addresses in the range 192.168.1.2

Netmask: Number of Bits for Host Part (0=default) (0)8 To set a mask equivalent to
255.255.255.0, use the value 8:

For now, don’t worry about the telnet
config password. You can set it later if
you want to.

Change telnet config password (N) N

8

through 192.168.1.254, it masks out the top three numbers
(octets). This is called the netmask, or subnet mask. In
your PC’s network settings, you’ll see it written as a full
network address, like so: 255.255.255.0. In the Lantronix
modules, tell the module the number of bits for the netmask.

Baudrate (9600) ? Once you’ve entered the previous
settings, choose option 1 from the
menu. This configures the serial
settings, as follows. You’ll use the
default 9600 bits per second, for now:

8

I/F Mode (4C) ?The I/F (interface) mode sets the
additional parameters of the serial
communication: 8 bits per byte, no
parity, one stop bit. These settings are
covered by the default value, 4C:

8

Flow (00) ?You’re not going to use hardware
flow control, so the default, 00, turns
it off:

8

Port No (10001) ?Following is the number the
network port number that will be
connected to the device’s serial port.
Unless you need a specific port, use
the default port 10001:

8

ConnectMode (C0) ?D4Next comes the ConnectMode.
This parameter controls how the
module reacts when it gets network
connections. Setting D4 tells it to allow
all incoming connections, and when it
gets an incoming connection, it should
send a response out the serial port. You’ll
see this in action shortly.

8

MTT_Chapter4.indd Sec1:122MTT_Chapter4.indd Sec1:122 8/24/07 4:32:45 PM8/24/07 4:32:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 123

Change Setup:

 0 Server configuration

 1 Channel 1 configuration

 5 Expert settings

 6 Security

 7 Factory defaults

 8 Exit without save

 9 Save and exit Your choice ? 9

Parameters stored ...

Finally, choose option 9 to save
your settings and exit setup.

8

NOTE: For full details on all the settings

of the Lantronix modules, check out each

module’s user guide, found online at www.

lantronix.com/support/documentation.html.

I’ll cover only the settings needed for the

projects detailed here. Once you’re comfort-

able using the modules, it’s worth exploring

some of the other features.

Auto-increment source port (N) ? NWith every new outgoing connec-
tion, the Lantronix modules can be
configured to choose a new outgoing
port. You don’t need this, so when your
module asks, reply with a no:

8

Remote IP Address : (000) .(000) .(000) .(000)

Remote Port (0) ?

The Lantronix modules can be
configured to connect automatically
to a remote address and a remote port
number on startup. In this chapter, you
won’t use this feature, so enter the
default values (0 or 000) for all of these:

8

DisConnMode (00) ?The Disconnect mode determines
how the module handles disconnection
from remote addresses. The default
value, 00, will meet your needs:

8

FlushMode (00) ?The FlushMode controls how the
module flushes its serial port buffers.
The default value, 00, tells it to clear
both transmit and receive buffers
whenever it disconnects from a remote
address:

8

DisConnTime (00:00) ?:The Disconnect Time sets how
long a remote device can be connected
to the module with no activity. 00:00
sets the time to infinite:

8

SendChar 1 (00) ?

SendChar 2 (00) ?

The SendChar settings allow you
to set a string of characters that can
be sent to the module either from a
remote device or from the local serial
port to force it to disconnect. For now,
you won’t need this feature:

8

MTT_Chapter4.indd Sec1:123MTT_Chapter4.indd Sec1:123 8/24/07 4:33:06 PM8/24/07 4:33:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

124 MAKING THINGS TALK

Now you’re ready to connect to the module
from the network. Connect the module to

your network with an Ethernet cable. Leaving your serial
terminal connection open, reset the module by pressing
its reset button. After a few seconds, it should return the
letter D in the serial window, indicating that it’s discon-
nected from any other device.

Now open your terminal program (xterm on Linux/Unix or
Terminal on Mac OS X) and attempt to make a telnet con-
nection to the module’s IP address on port number 10001.
On Windows, you can run the telnet program from the
command prompt or use PuTTY to connect.

telnet 192.168.1.20 10001

You’ll get a response like this:

Trying 192.168.1.20...

Connected to 192.168.1.20.

Escape character is '̂]'.

Back in your serial terminal program, the module will
return C for “connected”, I for “incoming connection,”
and the address of the machine that connected to it:

CI192.168.1.45

Now type messages back and forth. Whatever you type
in the telnet session should show up in the serial window,
and vice versa. Hello Internet! You’ve made your first con-
nection. To disconnect, close the telnet session. The Micro
module should respond with a D for “disconnected.”

Once a Lantronix module is on the network, you can also
configure it via telnet. Telnet to the device’s IP address on
port 9999 and you’ll get the same configuration menu that
you got in the serial terminal when you reset the module
and held down the x button. You can also configure it via
a web browser. Open a browser and enter the module’s
IP address. You’ll get a Java-based configuration screen.
Sometimes it can be useful to reconfigure your module
via the Web or telnet. For initial configuration, however, it’s
easiest to configure via the serial port, because you don’t
need to know whether it’s successfully obtained an IP
address in order to do so.

Connecting Through the Network Module
Now that you’ve confirmed that your Micro works and that
you can connect to it, it’s time to make connections to the

The module’s responses parallel those of the Bluetooth

modem in Chapter 2. When in command mode, it sends

messages reporting on its status: the Micro module’s

D response corresponds to the NO CARRIER response

from the Bluetooth module’s AT command set. The

CIaddress response corresponds to the Bluetooth

modem’s CONNECT,address response, and so forth.

In fact, it’s possible to make the Lantronix modules

operate using an AT-style command set by changing

the ConnectMode to D6. For the programs in this book,

however, it’s easier to use the less-verbose protocol

afforded by setting the ConnectMode to D4.

Modem Responses

rest of the Net from it. With the serial terminal connec-
tion open, press the reset button on the module. It should
respond with a D for “disconnected.” To force a Lantronix
device to connect to a remote address, type C followed by
the remote address (numeric only), followed by a slash (/)
followed by the port number. For example, to connect to
O’Reilly’s web server, you’d type:

C208.201.239.37/80

Once you’re connected, you’d request a page just like you
did from the command line in Chapter 3. Type:

GET /index.html HTTP/1.0

HOST: www.oreillynet.com

Then hit the Return key twice.

You won’t see what you type, because the Lantronix
modules don’t echo your characters back to you, but you
will see everything the server sends in response. In this
case, you’ll get the header and full HTML text of O’Reilly’s
web page, something like this:

HTTP/1.1 302 Found

Date: Thu, 15 Mar 2007 21:51:02 GMT

Server: Apache

Location: http://www.oreillynet.com/index.csp

Content-Length: 287

Connection: close

Content-Type: text/html; charset=iso-8859-1

MTT_Chapter4.indd Sec1:124MTT_Chapter4.indd Sec1:124 8/24/07 4:33:33 PM8/24/07 4:33:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 125

If this doesn’t work, your serial program might not be

sending a carriage return followed by a line feed at the end

of each line. You can either reconfigure your serial program

to do this, or type Control-M (shown as ^M next) followed by

Control-J (^J) instead of pressing Return (once at the end of

each line, and twice at the end of the last line):

C208.201.239.37/80<Return>

GET /index.html HTTP/1.0^M^J

HOST: www.oreillynet.com^M^J^M^^J

You will probably also find this easier to work with if you

copy the contents of each line into a text file so that you

can cut and paste them (without the end-of-line characters,

because you’re typing them yourself) into the serial program.

!

The Lantronix modules’ connect command takes only numerical IP addresses, so you

can’t give them host names. For example, typing Cwww.google.com/80 won’t work. If

you need to find a host’s IP address, use the ping command mentioned in Chapter 3.

For example, if you open a command prompt and type ping –c 1 www.oreillynet.com,

you will get the following response:

PING www.oreillynet.com (208.201.239.37): 56 data bytes

64 bytes from 208.201.239.37: icmp_seq=0 ttl=45 time=97.832 ms

And there, in the first line, is the numerical IP address you need. Remember, ping is

your friend.

Finding a Host’s IP Address

… and so forth. The web server will close the connection
when it’s sent you the whole page.

You’ve made two connections now. In the first, the
Lantronix module acted as a server. You telnetted into
it and saw what you typed come out the serial port. In
the second, the module acted as a client, connecting
to a remote host, making an HTTP request, and delivering
the results through the serial port. Now it’s time to
write a program to make HTTP requests directly from
a microcontroller.
X

A DIY ribbon cable adaptor for
the Micro. Shown below that is the
Micro-to-USV-adaptor circuit using
an adaptor made from an IDC DIP
plug and an IDC socket. The circuit
is the same as in Figure 4-3.

MTT_Chapter4.indd Sec1:125MTT_Chapter4.indd Sec1:125 8/24/07 4:33:58 PM8/24/07 4:33:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

126 MAKING THINGS TALK

In this project, you’ll make a networked air
quality meter. You’ll need an analog panel
meter, like the kind you find in speedom-
eters and audio VU meters. I got mine at
a yard sale, but you can often find them in
electronics surplus stores or junk shops.
The model recommended in the parts list
here is less picturesque than mine, but it
will do for a placeholder until you find one
you love.

MATERIALS

1 Lantronix embedded device server Available
from many vendors, including Symmetry
Electronics (www.semiconductorstore.com) as part
number CO-E1-11AA (Micro), or WM11A0002-01
(WiMicro), or XP1001001-03R (XPort).
1 solderless breadboard such as Digi-Key part
number 438-1045-ND, or Jameco part number
20601.
1 USB-to-serial circuit such as the FT232RL, or
RS-232-to-serial circuit such as the MAX3323, as
shown in Chapter 2. Use the second of these if you
don’t have a USB port and have to use an RS-232
serial port. Otherwise use the first.
The micro-to-breadboard connector from the
previous project (or make another one if needed).
Arduino module or other microcontroller.
1 voltmeter Get a nice-looking antique one if you
can. For a placeholder, you can use part number
48J6151 from Newark (www.newarkinone.com).
Ideally, you want a meter that reads a range from
0–5V, or 0–10V at most.
5 LEDs

»

»

»

»

»
»

»

An Embedded Network Client Application
By now, you should be pretty good at making connections through your module.
It’s time to build a full application. This project is an embedded web scraper. It takes
data from an existing website and uses it to affect a physical output. It’s conceptually
similar to devices made by Ambient Devices, Nabaztag, and others.

Networked Air
Quality Meter

On the following page, Figure 4-5 shows how it works:
the microcontroller makes a network connection to a
PHP script through the Lantronix module. The PHP script
connects to another web page, reads a number from that
page, and sends the number back to the microcontroller.
The microcontroller uses that number to set the level of
the meter. The web page in question is AIRNow, www.
airnow.gov, the U.S. Environmental Protection Agency’s
site for reporting air quality. It reports hourly air quality
status for many U.S. cities, listed by ZIP code. When you’re
done, you’ll have a meter you can set anywhere in your
home or office to see the state of the air quality in your
city at a glance (assuming you live in the U.S.).

Project 6

MTT_Chapter4.indd Sec1:126MTT_Chapter4.indd Sec1:126 8/31/07 11:02:02 AM8/31/07 11:02:02 AM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 127

Figure 4-5
The networked air quality meter.

Control the Meter Using the Microcontroller
First, you need to generate a changing voltage from the
microcontroller to control the meter. Microcontrollers
can’t output analog voltages, but they can generate a
series of very rapid on-and-off pulses that can be filtered
to give an average voltage. The higher the ratio of on-time
to off-time in each pulse, the higher the average voltage.
This technique is called pulse width modulation (PWM). In
order for a PWM signal to appear as an analog voltage, the
circuit receiving the pulses has to react much more slowly
than the rate of the pulses. For example, if you pulse width
modulate an LED, it will seem to be dimming, because
your eye can’t detect the on-off transitions when they
come faster than about 30 times a second. Analog voltme-
ters are very slow to react to changing voltages, so PWM
works well as a way to control these meters. By connecting
the positive terminal of the meter to an output pin of the

microcontroller and the negative pin to ground and pulse
width modulating the output pin, you can easily control the
position of the meter.

Figure 4-6 shows the whole circuit for the project. The
Lantronix module is connected to the microcontroller’s
serial pins. You’ll use it and the LEDs in the steps that
follow.

If you’ve hooked this circuit up, you probably

won’t be able to program the microcontroller, because the

Lantronix is using the same serial pins that are used by

the USB interface. To program the board, you’ll need to

disconnect the RX pin (pin 0 on the Arduino).

!

microcontroller controls
Lantronix module serially

microcontroller sets
meter voltage using PWM

micro-
controller Meter

Lantronix
serial-to-
ethernet

microcontroller sends
HTTP GET request
through Lantronix device

Landronix module connects
to router via Ethernet

PHP script responds
to microcontroller with
summary of Airnow page

PHP Script AirNow
web page

Internet

MTT_Chapter4.indd Sec1:127MTT_Chapter4.indd Sec1:127 8/24/07 4:35:03 PM8/24/07 4:35:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

128 MAKING THINGS TALK

Figure 4-6
The circuit for a networked meter.
The Micro itself has been removed to
show the wiring beneath it. It plugs
into the connector.

A. Micro module connector B. Micro Reset C. GND D. Micro TX E. Micro RX F. +5V

D

A
B

C F

E

MTT_Chapter4.indd Sec1:128MTT_Chapter4.indd Sec1:128 8/24/07 4:35:23 PM8/24/07 4:35:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 129

Write a PHP Script to Read
the Web Page

Next, you need to get the data from AIRNow’s site in a
form the microcontroller can read. The microcontroller
can read in short strings serially, and converting those
ASCII strings to a binary number is fairly simple. Parsing
through all of the text of a web page using a microcon-
troller is difficult, but it’s the kind of task that PHP was
made for. The program that follows reads the AIRNow
page, extracts the current AQI reading, and passes that
value on to the microcontroller. The Lantronix module is
the microcontroller’s gateway to the Net, allowing it to
open a TCP connection to your web host, where you need
to install this PHP script.

NOTE: You could also run this script on one of the computers on

your local network. As long as the microcontroller is connected

to the same network, you’ll be able to connect to it and request

the PHP page. For information on installing PHP or finding a web

hosting provider that supports PHP, see www.php.net/manual/en/

tutorial.php#tutorial.requirements.

/*

 Voltmeter Tester

 Uses analogWrite() to control a voltmeter.

 Language: Wiring/Arduino

*/

// the output pin that the meter is attached to:

#define meterPin 11

int pwmValue = 0; // the value used to set the meter

void setup() {

 // nothing here

}

void loop() {

 // move the meter from lowest to highest values:

 for (pwmValue = 0; pwmValue < 255; pwmValue ++) {

 analogWrite(meterPin, pwmValue);

 delay(10);

 }

 delay(1000);

 // reset the meter to zero and pause:

 analogWrite(meterPin, 0);

 delay(1000);

}

Here’s a program to test whether you
can control the meter:

You will need to adjust the range of
pwmValue depending on the sensitiv-
ity of your meter. The meters used
to design this project had different
ranges. The meter from Newark in
the parts list responds to a 0 to 5
volt range, so the preceding program
moves it from its bottom to its top.
The antique meter, on the other
hand, responds to 0 to 3 volts, so it
was necessary to limit the range of
pwmValue to 0 – 165. When it was at
165, the meter reached its maximum.
You’ll see in the code that appears
later how to limit the range using a
maximum value.

Figure 4-7 shows AIRNow’s page for New York City (airnow.
gov/index.cfm?action=airnow.showlocal&cityid=164).
AIRNow’s page is formatted well for extracting the data.
The AQI index number is clearly shown in text, and if you
remove all of the HTML tags, it appears on a line by itself,
always following the line AQI observed at hh:mm AM/PM:.

NOTE: One of the most difficult things about maintaining appli-

cations like this, which scrape data from an existing website, is

the probability that the designers of the website could change

the format of their page. If that happens, your application could

stop working, and you’ll need to rewrite your code. This is a case

where it’s useful to have the PHP script do the scraping of the

remote site. It’s more convenient to rewrite the PHP than it is to

reprogram the microcontroller once it’s in place.

X

 Test It

MTT_Chapter4.indd Sec1:129MTT_Chapter4.indd Sec1:129 8/24/07 4:36:00 PM8/24/07 4:36:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

130 MAKING THINGS TALK

Figure 4-7
AIRNow’s page is nicely laid out
for scraping. The PHP program
used in this project ignores the
ozone level.

<?php

/*

 AIRNow Web Page Scraper

 Language: PHP

*/

 // Define variables:

 // url of the page with the air quality index data for New York City:

 $url =

 'http://airnow.gov/index.cfm?action=airnow.showlocal&cityid=164';

 // open the file at the URL for reading:

 $filePath = fopen ($url, "r");

 // as long as you haven't reached the end of the file:

 while (!feof($filePath))

 {

 // read one line at a time, and strip all HTML and

 // PHP tags from the line:

 $line = fgetss($filePath, 4096);

 echo $line;

 }

 // close the file at the URL, you're done:

 fclose($filePath);

?>

The PHP script
shown here opens

the URL of the AIRNow web page and,
as long as there are more lines to read,
it prints the latest line. The fgetss()
command reads a line of text and
removes any HTML tags.

When you save this file on your web
server and open it in a browser, you
should get the text of the AIRNow page
without any HTML markup or images.
It’s not very readable in the browser
window, but if you view the source code
(click the View#Source menu item
in your web browser), you’ll see that
the text is nicely separated into lines.
Scroll down and you’ll find some lines
like this:

AQI observed at 12:00 EDT:

28

These are the only two lines you care
about.

 Fetch It

MTT_Chapter4.indd Sec1:130MTT_Chapter4.indd Sec1:130 8/24/07 4:36:20 PM8/24/07 4:36:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 131

 $readParticles = 0; // flag telling you the next line

 // is the particle value

 $particles = -1; // the particles value

To extract the data
you need from

those lines, you’ll need a couple more
variables. Add these lines at the top of
the program (but after the line starting
with <?php):

 // if the current line contains the substring "AQI observed at"

 // then the line following it is either the particle reading

 // or the ozone reading:

 if (preg_match('/AQI observed at /', $line)) {

 // if $particles == -1, you haven't gotten

 // a value for it yet:

 if ($particles == -1) {

 $readParticles = 1;

 }

 }

Then replace the command echo
$line; in the program with this block of
code:

This block uses the preg_match()
command to look for a string of text
matching a pattern you give it. In
this case, it looks for the pattern AQI
observed at. You know that when
you see that line, the next line is the
number you want. When the PHP script
finds the “observed at” line, it sets the
variable $readParticles to 1.

8

 // if the previous line was the "observed at line" preceding

 // the particle matter reading, then $readParticles = 1 and

 // you should get this line, trim everything but the number,

 // and save the result in $particles:

 if ($readParticles == 1) {

 $particles = trim($line);

 echo "< AQI: $particles>";

 $readParticles = 0;

 }

Now, add the following block of
code before the one you just added
(just before the comment that begins
with “if the current line”):

This code checks to see if $readPar-
ticles is equal to 1. If it does, it reads
the current line of text, trims off any
excess characters, and prints it out.
The result in your web browser should
look like this:

< AQI: 43>

Now you’ve got a short string of text
that your microcontroller can read. The
next step program your microcontroller
to read your PHP script over the Net
(be sure to reconnect the Lantronix
after you program it). To see the PHP
script in its entirety, see Appendix C.

8

 Scrape It

MTT_Chapter4.indd Sec1:131MTT_Chapter4.indd Sec1:131 8/24/07 4:39:49 PM8/24/07 4:39:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

132 MAKING THINGS TALK

Read the PHP Script Using
the Microcontroller

The microcontroller can communicate through the
Lantronix module, just like you did from the serial terminal
window. First, you send a connect string telling it the
numerical address of the server and the port number.
When a connection is made, the Lantronix device returns
a “C” to let you know it’s connected. After that, you send
an HTTP GET request for the PHP script. Then the script
returns the Air Quality Index string.

Before you start programming, plan the sequence of
messages. Using the Lantronix module as a network
client is very similar to using Processing as a network
client. In both cases, you have to know the correct
sequence of messages to send and how the responses
will be formatted. You have to write a program to manage
the exchange of messages. Whether you’re writing that
program in Processing or whether you’re writing it in
Arduino or in another language on another microcon-
troller, the steps are still the same:

1. Open a connection to the web server
2. Send an HTTP GET request
3. Wait for a response
4. Process the response
5. Wait an appropriate interval and do it all again

Each of these steps involves sending a message and then
waiting for a response, so it’s worthwhile to keep track of
the state that the program is in. Figure 4-8 is a flowchart of
what happens in the microcontroller program. The states
of the program — disconnected, connecting, connected,
requesting, reading, and complete — are laid out on the
left of the chart. The actions taken to move from one
state to the next follow from the states. You can see that
in each state, there’s a loop where you take action, then
wait. Based on the outcome of the action, you either keep
looping, or go to the next state. Laying out the whole
program in a flowchart like this will help you keep track of
what’s going on at any given point.

Because you need to use the serial port to send and receive
messages to and from the server, you can’t use Serial.
print() statements to check what’s going on in the program.
Instead, you can use LEDs to keep track of the part of
the program that you’re in. LEDs attached to I/O pins will
indicate which state your program is in. Figure 4-8

A flowchart of the Arduino program for making
and processing an HTTP GET request.

disconnected

connecting

connected

requesting

reading

request
complete

deviceConnect()

httpRequest()

interpretResults()

stringToNumber()

setMeter()

waitForNextRequest()

resetDevice()

read incomming
bytes

look for data

readData()
add

character to
inString

not a C

C

not a <

C

not a < or a number

0-9

v

MTT_Chapter4.indd Sec1:132MTT_Chapter4.indd Sec1:132 8/24/07 4:40:38 PM8/24/07 4:40:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 133

// Defines for the program's status (used for status variable):

#define disconnected 0

#define connecting 1

#define connected 2

#define requesting 3

#define reading 4

#define requestComplete 5

// Defines for I/O pins:

#define connectedLED 2 // indicates when there's a TCP connection

#define requestingLED 3 // indicates a HTTP request has been made

#define readingLED 4 // indicates device is reading HTTP results

#define requestCompleteLED 5 // indicates a successful read

#define programResetLED 6 // indicates reset of Arduino

#define deviceResetPin 7 // resets Lantronix Device

#define meterPin 11 // controls VU meter; has to be one of

 // the PWM pins (9 – 11)

The program
starts out

by defining each of the states as
numerical values, so that you can refer
to them later on in a case statement.
Then it defines the pin numbers for the
various inputs and outputs:

// defines for voltmeter:

#define meterMax 130 // max value on the meter

#define meterScale 150 // my meter reads 0 - 150

A couple of constants are defined
for converting the AQI reading to a
meter level:

8

// variables:

int inByte= -1; // incoming byte from serial RX

char inString[32]; // string for incoming serial data

int stringPos = 0; // string index counter

int status = 0; // Lantronix device's connection status

long lastCompletionTime = 0; // counter for delay after last completion

Next, the global variables are
declared and initialized:

8

void setup() {

 // set all status LED pins and Lantronix device reset pin:

 pinMode(connectedLED, OUTPUT);

 pinMode(requestingLED, OUTPUT);

 pinMode(requestCompleteLED, OUTPUT);

 pinMode(programResetLED, OUTPUT);

 pinMode(deviceResetPin, OUTPUT);

 pinMode(meterPin, OUTPUT);

 // start serial port, 9600 8-N-1:

 Serial.begin(9600);

 //reset Lantronix device:

 resetDevice();

 // blink reset LED:

 blink(3);

}

In the setup() method, set the
state of all the I/O pins, initialize the
serial port, call a custom method to
reset the Lantronix device, then blink
the program reset LED to signal that
the main loop is about to begin:

8

 Connect It

MTT_Chapter4.indd Sec1:133MTT_Chapter4.indd Sec1:133 8/24/07 4:41:00 PM8/24/07 4:41:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

134 MAKING THINGS TALK

// Take the Lantronix device's reset pin low to reset it:

void resetDevice() {

 digitalWrite(deviceResetPin, LOW);

 delay(50);

 digitalWrite(deviceResetPin, HIGH);

 // pause to let Lantronix device boot up:

 delay(2000);

}

You can see from the schematic
back in Figure 4-6 that digital pin 7 is
connected to the Lantronix module’s
reset pin. Here’s the routine that resets
the module:

8

// Blink the reset LED:

void blink(int howManyTimes) {

 int i;

 for (i=0; i< howManyTimes; i++) {

 digitalWrite(programResetLED, HIGH);

 delay(200);

 digitalWrite(programResetLED, LOW);

 delay(200);

 }

}

The blink() method called in the
setup is a method to blink the LED
on pin 6, so you know the microcon-
troller’s main loop is about to begin:

8

void loop() {

 stateCheck();

 setLEDs();

}

The loop() just calls two routines,
one to check the state of the program
and take appropriate action, and
another to set the LEDs depending on
the state of the program. Here it is:

8

void stateCheck() {

 switch (status) {

 case disconnected:

 // attempt to connect to the server:

 deviceConnect();

 break;

 case connecting:

 // until you get a C, keep trying to connect:

 // read the serial port:

 if (Serial.available()) {

 inByte = Serial.read();

 if (inByte == 'C') { // 'C' in ASCII

 status = connected;

 }

 else {

 // if you got anything other than a C, try again:

 deviceConnect();

 }

 }

 break;

 case connected:

 // send HTTP GET request for CGI script:

 httpRequest();

The stateCheck() method is a
switch-case statement that checks the
value of the status variable. In each
case, it takes whatever action is appro-
priate to its current value:

8

»

MTT_Chapter4.indd Sec1:134MTT_Chapter4.indd Sec1:134 8/24/07 4:41:20 PM8/24/07 4:41:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 135

Continued from opposite page.

 break;

 case requesting:

 lookForData();

 break;

 case reading:

 readData();

 break;

 case requestComplete:

 waitForNextRequest();

 }

}

void deviceConnect() {

 // send out the server address and

 // wait for a "C" byte to come back.

 // fill in your server's numerical address below:

 Serial.print("C82.185.179.43/80\n");

 status = connecting;

}

In the disconnected state, the
deviceConnect() method sends the
connect string to the Lantronix module,
like so:

8

 // until you get a C, keep trying to connect:

 // read the serial port:

 if (Serial.available()) {

 inByte = Serial.read();

 if (inByte == 'C') { // 'C' in ascii

 status = connected;

 }

 else {

 // if you got anything other than a C, try again:

 deviceConnect();

 }

 }

 break;

In the connecting state (back in
the stateCheck() method, which you’ve
already seen), you’ve already sent a
connect string, and you have to wait
for the module to connect and return a
“C”. If you get anything else, you have
to try again:

8

void httpRequest() {

 // make sure you've cleared the last byte

 // from the last request:

 inByte = -1;

 // reset the string position counter:

 stringPos = 0;

 // make HTTP GET request and fill in the path to your version

 // of the CGI script:

 Serial.print("GET /~myaccount/scraper.php HTTP/1.0\n");

 // fill in your server's name:

 Serial.print("HOST:example.com\n\n");

 // update the state of the program:

 status = requesting;

}

Once you’re connected, you send
an HTTP GET request. Here’s the
httpRequest() method:

The server replies to httpRequest()
like so:

HTTP/1.1 200 OK

Date: Fri, 14 Apr 2006 21:31:37 GMT

Server: Apache/2.0.52 (Red Hat)

Content-Length: 10

Connection: close

Content-Type: text/html; charset=UTF-8

< AQI: 65>

8

Fill in the numerical IP address

of your web server here.

8

MTT_Chapter4.indd Sec1:135MTT_Chapter4.indd Sec1:135 8/24/07 4:41:43 PM8/24/07 4:41:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

136 MAKING THINGS TALK

void lookForData() {

 // wait for bytes from server:

 if (Serial.available()) {

 inByte = Serial.read();

 // If you get a "<", what follows is the air quality index.

 // You need to read what follows the <.

 if (inByte == '<') {

 stringPos = 0;

 status = reading;

 }

 }

}

The stuff you see at the top is the
HTTP header. When you call the PHP
script from a browser, you don’t see
all of the header, because the browser
strips it out for you. The lookForData()
method reads strip the header out by
ignoring all the bytes before the < sign:

8

void readData() {

 if (Serial.available()) {

 inByte = Serial.read();

 // Keep reading until you get a ">":

 if (inByte != '>') {

 // save only ASCII numeric characters (ASCII 0 - 9):

 if ((inByte >= '0') && (inByte <= '9')){

 inString[stringPos] = inByte;

 stringPos++;

 }

 }

 // if you get a ">", you've reached the end of the AQI reading:

 else {

 interpretResults();

 }

 }

}

After you get the < sign, the
readData() method takes only the
numeric characters from the remaining
string and saves them to the inString[]
array. When it gets the > symbol indi-
cating the end of the string, it calls the
interpretResults() method:

8

void interpretResults() {

 // convert the string to a numeric value:

 int airQuality = atoi(inString);

 // set the meter appropriately:

 setMeter(airQuality);

 lastCompletionTime = millis();

 status = requestComplete;

}

The interpretResults() method
converts the string to a number and
sets the meter. It also takes note of the
time when the meter was last success-
fully set, so you can count one minute
before the next request:

8

MTT_Chapter4.indd Sec1:136MTT_Chapter4.indd Sec1:136 8/24/07 4:42:12 PM8/24/07 4:42:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 137

void setMeter(int desiredValue) {

 int airQualityValue = 0;

 // if the value won't peg the meter, convert it

 // to the meter scale and send it out:

 if (desiredValue <= meterScale) {

 airQualityValue = (desiredValue * meterMax /meterScale);

 analogWrite(meterPin, airQualityValue);

 }

}

The setMeter() method takes the
number and scales it to set the meter
appropriately. You will need to adjust
the formula if your meter is different
from the ones shown here.

You will need to adjust meterMax and
meterScale to values that work for your
meter. You can determine these by
using the meter testing program in the
last section.

8

void waitForNextRequest() {

 if (millis() - lastCompletionTime >= 120000) {

 // reset Lantronix device before next request:

 resetDevice();

 status = disconnected;

 }

}

When the request is complete,
waitForNextRequest() counts time for
two minutes, then sets the status to
disconnected to initiate a new request:

You can see that you’re waiting two full
minutes in between successful reads
of the web page. In fact, you could wait
even longer, as the page is updated
only about once an hour. There’s no
need to check constantly. It creates
undue demand on the server, and
wastes energy. Remember, one of the
cardinal rules of love and networking is
to listen more than you speak.

8

void setLEDs() {

 /* Except for the disconnected and connecting states,

 all the states of the program have corresponding LEDS.

 so you can use a for-next loop to set them by

 turning them all off except for the one that has

 the same number as the current program state:

 */

 for (int thisLED = 2; thisLED <= 5; thisLED++) {

 if (thisLED == status) {

 digitalWrite(thisLED, HIGH);

 }

 else {

 digitalWrite(thisLED, LOW);

 }

 }

}

The last thing you need to do in the
main loop is to set the indicator LEDs
so that you know where you are in the
program. Because you gave each of
the status settings a numeric value up
at the top of the program, you can use
those numbers to set the LEDs. The
setLEDs() methods does this:

That’s the whole program. Once you’ve
got this program working on the micro-
controller, the controller will make the
HTTP GET request once a minute, and
set the meter accordingly.

8

MTT_Chapter4.indd Sec1:137MTT_Chapter4.indd Sec1:137 8/24/07 4:42:32 PM8/24/07 4:42:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

138 MAKING THINGS TALK

Before you run the final program for this project, you must change at

least three lines of code (emphasized in the code listing), which are in various

places in the example:

! Figure 4-9
The completed networked air quality meter.

Serial.print("C82.165.199.35/80\n");

Serial.print("GET /netobj/code/php/scraper.php HTTP/1.1\n");

Serial.print("HOST:example.com\n\n");

You may also need to change meterScale and meterMax, depending on the

sensitivity of your meter.

The Finished Project

MTT_Chapter4.indd Sec1:138MTT_Chapter4.indd Sec1:138 8/24/07 4:42:54 PM8/24/07 4:42:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 139

Serial-to-Ethernet Modules: Programming
and Troubleshooting Tools
You probably hit a number of problems in making the connections in the last section.
Perhaps you wired the transmit and receive connections backwards, or perhaps you got
the IP configuration wrong. Probably the most challenging thing about troubleshooting
your problems was that there was no clear indication from the Micro module that
anything had happened at all. This is the norm when you’re working with these modules,
or with just about any embedded modem-style module that you build yourself. This
section covers a few things you should always check, and a few tools that will help you
solve problems. These principles apply whether you’re using the Lantronix modules or
some other embedded network module.

The Three Most Common Mistakes

Power and Ground
Always check whether you have made the power and
ground connections correctly. If you’re lucky, the module
you’re using will have indicator LEDs that light up when
it’s working properly. Whether it does or not, check the
voltage between power and ground with a meter to make
sure you’ve got it powered correctly.

Transmit and Receive
Confirm that you’ve got the module’s transmit pin wired to
the receive pin of your serial port or microcontroller, and
vice versa. If you don’t, you’ll get nothing either way.

Configuration
If you’re sure about the hardware connections, check
the device’s configuration to make sure it’s all correct. In
the case of the Lantronix modules, is the IP address you
entered one that’s on your subnet? Is the router address
correct? Is the netmask?

The Lantronix devices, like many modems, can be config-
ured from either end. So far you’ve seen how to configure
them through the serial port, by holding down the x key in
the serial terminal while you reset the module. Remember,
you can also telnet into port 9999 to change the configu-
ration settings. If you have problems with the serial con-
nection, try checking the configuration via the network
connection.

Diagnostic Tools and Methods
Once you know the modem’s working, you have to program
the sequence of messages that constitutes your application.
Depending on the application’s needs, this sequence can
get complex, so it’s useful to have a few simple programs
around to make sure things work the way you want them to.

Use a Second Serial Output
for Debugging Messages

One of the most difficult aspects of debugging a micro-
controller speaking to a Lantronix device is that you can’t
send serial debugging messages to the Arduino or Wiring
Serial Monitor over the serial port, because it’s attached
to the Lantronix device. Any serial messages you send will
interfere with the communication with the server! This is a
common problem in networked microcontroller projects.
You can use the Wiring and Arduino SoftwareSerial library
to send serial debugging messages on another set of pins.
SoftwareSerial can send and receive data only at speeds
up to 9600 baud, but it’s useful for debugging.

NOTE: On a Wiring module, you can use the second serial port

instead of using SoftwareSerial.

To use SoftwareSerial, you’ll need two spare digital I/O pins
and either a USB-to-serial module or an RS-232-to-TTL
module to which you can connect them. In the previous
project you never used pins 8 and 9, so this example uses
those pins. Figure 4-10 shows a modified version of the
meter schematic with the FT232RL USB-to-serial module
added to pins 8 and 9 for use with SoftwareSerial.

MTT_Chapter4.indd Sec1:139MTT_Chapter4.indd Sec1:139 8/24/07 4:43:26 PM8/24/07 4:43:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

140 MAKING THINGS TALK

Figure 4-10
Modified network meter circuit, with
serial adaptor added.

A. Micro module connector B. Micro Reset C. GND D. Micro TX E. Micro RX

F. +5V G. SWserial TX H. SWserial RX

D

E
FC

B

G H

A

MTT_Chapter4.indd Sec1:140MTT_Chapter4.indd Sec1:140 8/24/07 4:44:03 PM8/24/07 4:44:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 141

/*

 SoftwareSerial example

 language: Wiring/Arduino

 This program uses the SoftwareSerial library to send serial messages

 on pins 8 and 9.

*/

// include the SoftwareSerial library so you can use its functions:

#include <SoftwareSerial.h>

#define rxPin 8

#define txPin 9

// set up a new serial port

SoftwareSerial mySerial = SoftwareSerial(rxPin, txPin);

void setup() {

 // define pin modes for tx, rx, led pins:

 pinMode(rxPin, INPUT);

 pinMode(txPin, OUTPUT);

 // set the data rate for the SoftwareSerial port

 mySerial.begin(9600);

}

void loop() {

 // print out a debugging message:

 mySerial.println("Hello from SoftwareSerial");

 delay(100);

}

Wherever you want
have a debugging

message printed out, use SoftwareSe-
rial instead of Serial. Open your serial
terminal program (GNU screen or
PuTTY) to see the messages. Here’s a
simple program that shows how to use
the SoftwareSerial library:

// include the SoftwareSerial library so you can use its functions:

#include <SoftwareSerial.h>

#define rxPin 8

#define txPin 9

// Defines go here

// variables go here

// set up a new serial port

SoftwareSerial mySerial = SoftwareSerial(rxPin, txPin);

void setup() {

 // the rest of the setup() code goes here

 // define pin modes for SoftwareSerial tx, rx pins:

Here’s an abbreviated version of
the meter program, showing where you
might insert SoftwareSerial debugging
messages. Most of the code has been
removed here, to show you debugging
messages at the beginning or end of
each function. New code is shown in
blue:

8

»

 Debug It

MTT_Chapter4.indd Sec1:141MTT_Chapter4.indd Sec1:141 8/24/07 4:44:40 PM8/24/07 4:44:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

142 MAKING THINGS TALK

Continued from previous page.

 pinMode(rxPin, INPUT);

 pinMode(txPin, OUTPUT);

 // set the data rate for the SoftwareSerial port

 mySerial.begin(9600);

 // print out a debugging message:

 mySerial.println("All set up");

}

void loop() {

 stateCheck();

 setLEDs();

}

void stateCheck() {

 // the rest of stateCheck() code goes here

}

void setLEDs() {

 // setLEDs() code goes here

}

void deviceConnect() {

 // print out a debugging message:

 mySerial.println("connect");

 // the rest of deviceConnect() code goes here

}

void httpRequest() {

 // print out a debugging message:

 mySerial.println("request");

 // the rest of httpRequest() code goes here

}

void lookForData() {

 // wait for bytes from server:

 if (Serial.available()) {

 inByte = Serial.read();

 mySerial.print(inByte, BYTE);

 // the rest of lookForData() code goes here

}

void readData() {

 if (Serial.available()) {

 inByte = Serial.read();

 mySerial.print(inByte, BYTE);

 // the rest of readData() code goes here

}

void interpretResults() {

 // print out a debugging message:

 mySerial.println("interpret");

 // the rest of interpretResults() code goes here

 // print out a debugging message:

 mySerial.println("wait");

}

void setMeter(int desiredValue) {

 // print out a debugging message:

 mySerial.println("set");

 // the rest of setMeter() code goes here

}

void resetDevice() {

 // print out a debugging message:

 mySerial.println("reset");

 // the rest of resetDevice() code goes here

}

/*

 Blink the reset LED.

 */

void blink(int howManyTimes) {

 int i;

 for (i=0; i< howManyTimes; i++) {

 digitalWrite(programResetLED, HIGH);

 delay(200);

 digitalWrite(programResetLED, LOW);

 delay(200);

 }

}

MTT_Chapter4.indd Sec1:142MTT_Chapter4.indd Sec1:142 8/24/07 4:45:00 PM8/24/07 4:45:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 143

Write a Test Client Program
in Processing

It’s easiest to work through the steps of the program if you
can step through the sequence of events. More expensive
development environments allow you to step through a
program one line at a time, but you can make your own
version of a step-by-step program in Processing (you'll
need to hook the Lantronix device to your computer as

shown back in Figure 4-3). The following code goes through
each of the steps needed to command a Lantronix module
to connect to a remote server. Every time you press any key
on the keyboard, it takes the next step. The serialEvent()
method waits for data to be returned from each step and
prints it out, so you can decide when to take the next step.
It’s an excellent tool for diagnosing whether you’re getting
the responses you want from the remote server.

/*

 Lantronix serial-to-ethernet HTTP request tester

 Language: Processing

 This program sends serial messages to a Lantronix serial-to-ethernet

 device to get it to connect to a remote webserver and make an HTTP

 request. To use this program, connect your PC to the Lantronix modules

 serial port as you did when you were configuring the Lantronix module

 earlier.

 */

// include the serial library

import processing.serial.*;

Serial myPort; // Serial object

int step = 0; // which step in the process you're on

char linefeed = 10; // ASCII linefeed character

void setup()

{

 // get the list of serial ports:

 println(Serial.list());

 // open the serial port apprropriate to your computer:

 myPort = new Serial(this, Serial.list()[2], 9600);

 // configure the serial object to buffer text until it receives a

 // linefeed character:

 myPort.bufferUntil(linefeed);

}

void draw()

{

 //no action in the draw loop

}

void serialEvent(Serial myPort) {

 // print any string that comes in serially to the monitor pane

 print(myPort.readString());

}

The handy thing about
this program is that you

can test the exchange of messages
without having a microcontroller. Once
you know you have the sequence right,
you can translate it into code for the
Arduino module:

»

 Test It

MTT_Chapter4.indd Sec1:143MTT_Chapter4.indd Sec1:143 8/24/07 4:45:24 PM8/24/07 4:45:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

144 MAKING THINGS TALK

Continued from previous page.

void keyReleased() {

 // if any key is pressed, take the next step:

 switch (step) {

 case 0:

 // open a connection to the server in question:

 myPort.write("C208.201.239.37/80\r");

 // add one to step so that the next keystroke causes the next step:

 step++;

 break;

 case 1:

 // send a HTTP GET request

 myPort.write("GET /~igoe/index.html HTTP/1.0\n");

 myPort.write("HOST:example.com\n\n");

 step++;

 break;

 }

}

Write a Test Server Program
The previous program allowed you to connect

to a remote server and test the exchange of messages.
The remote server was beyond your control, however, so
you can’t say for sure that the server ever received your

messages. If you never made a connection, you have no
way of knowing whether the module can connect to any
server. To test this, you can write your own server program
for it to connect to.

/*

 server_test

 Language: Processing

 Creates a server that listens for clients and prints what they say.

 It also sends the last client anything that's typed on the keyboard.

*/

// include the net library:

import processing.net.*;

int port = 8080; // the port the server listens on

Server myServer; // the server object

Client thisClient; // incoming client object

void setup()

{

 myServer = new Server(this, port); // Start the server

}

void draw()

{

 // get the next client that sends a message:

Here is a short Processing program
that you can run on your PC. It listens
for incoming connections, and prints
out any messages sent over those con-
nections. It sends any keystrokes typed
out over the open connection.

8

»

To use this, first make sure your
Lantronix module and your PC are
on the same network. Then run this
program, and connect to it from the
module by connecting to your PC’s
IP address, port 8080. For example,
if your PC has the IP address
192.168.1.45, the connect string
would be:

C192.168.1.45/8080

You'll need to replace this address
and path with the address and path
of the server you want to contact.

8

MTT_Chapter4.indd Sec1:144MTT_Chapter4.indd Sec1:144 8/24/07 4:45:51 PM8/24/07 4:45:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LOOK, MA, NO COMPUTER! 145

Continued from opposite page.

 Client speakingClient = myServer.available();

 // if the message is not null, display what it sent:

 if (speakingClient !=null) {

 String whatClientSaid = speakingClient.readString();

 // print who sent the message, and what they sent:

 println(speakingClient.ip() + "\t" + whatClientSaid);

 }

}

// ServerEvent message is generated when a new client

// connects to the server.

void serverEvent(Server myServer, Client someClient) {

 println("We have a new client: " + someClient.ip());

 thisClient = someClient;

}

void keyReleased() {

 // only send if there's a client to send to:

 if (thisClient != null) {

 // if return is pressed, send newline and carriage feed:

 if (key == '\n') {

 thisClient.write("\r\n");

 }

 // send any other key as is:

 else {

 thisClient.write(key);

 }

 }

}

Whether you’re connecting from a
serial terminal program or have
programmed a microcontroller to
make the connection, you can use this
program to test whether the Lantronix
module is making a successful con-
nection. Once you’ve seen messages
coming through to this program in
the right sequence, just change the
connect string in your microcontroller
code to the address of the web server
you want to connect to, and everything
should work fine. If it doesn’t, the
problem is most likely with your web
server. Contact your service provider
for details on how to access any server
diagnostic tools they provide, especially
any error logs for your server.
X

This program uses port 8080,

which is a common alternative port

for many web servers. If you’re running

a web server on your PC, you might

have to change the port number in

this program.

!

Conclusion

The advantage of this model is that it doesn’t require a lot
of work to repurpose existing web applications. At most,
you need to write a variation of the PHP web scraper from
this chapter to summarize the relevant information from
an existing website. This flexibility makes it easier for
microcontroller enthusiasts who aren’t experienced in web
development to collaborate with web programmers, and
vice versa. It also makes it easy to reuse others’ work if you
can’t find a willing collaborator.

The model has its limits, though, and in the next chapter
you’ll see some ways to get around those limits with a
different model. Even if you’re not using this model, don’t
forget the troubleshooting tools mentioned here. Making
simple mock-ups of the programs on either end of a trans-
action can make your life much easier, because they let
you see what should happen, and modify what actually is
happening to match that.
X

The activities in this chapter show a model for networked objects that’s very flexible
and useful. The object is basically a browser, requesting information from the Web and
extracting the information it needs. You can use this model in many different projects.

MTT_Chapter4.indd Sec1:145MTT_Chapter4.indd Sec1:145 8/24/07 4:54:46 PM8/24/07 4:54:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

146 MAKING THINGS TALK

MTT_Chapter5.indd Sec1:146MTT_Chapter5.indd Sec1:146 8/29/07 10:13:34 AM8/29/07 10:13:34 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Communicating in
(Near) Real Time
So far, all of the networked communications you’ve seen worked like a

Web browser. Your object made a request to a remote server, the server

ran a program and then sent a response. This transaction worked by

making a connection to the web server, exchanging some information,

then breaking the connection. In this chapter, you’ll learn more about

that connection, and you’ll write a server program that allows you

to maintain the connection in order to facilitate a faster and more

consistent exchange between the server and client.

5
MAKE: PROJECTS

Musicbox by Jin-Yo Mok (2004)

The music box is connected to a composition program over the Internet using a serial-to-ethernet module. The
composition program changes the lights on the music box and the sounds it will play. Real time communication
between the two in order to give the player feedback on what he is playing. Photo courtesy of Jin-Yo Mok.

MTT_Chapter5.indd Sec1:147MTT_Chapter5.indd Sec1:147 8/29/07 10:14:05 AM8/29/07 10:14:05 AM

www.it-ebooks.info

http://www.it-ebooks.info/

148 MAKING THINGS TALK

Interactive Systems and Feedback Loops

For example, in the cat bed application in Chapter 3,
there’s no need for the system to respond in more than
a few seconds, because your reaction is not very time-
sensitive. As long as you get to see the cat while he’s on
the bed (which may be true for several minutes or hours),
you’re happy. Monski pong in Chapter 2 relies on a reason-
ably tight feedback loop in order to be fun. If it took a half
second or more for the paddles to move when you move
Monski’s arms, it’d be no fun. The timing of the feedback
loop depends on the shortest time that matters to the
participant.

Any system that requires coordination between action and
reaction needs a tight feedback loop. Consider remote
control systems, for example. Perhaps you’re building a
robot that’s operated over a network. In that case, you’d
need not only a fast network for the control system, but
also a fast response from the camera or sensors on the
robot (or in its environment) that are giving you informa-
tion about what’s happening. You need to be able to both
control it quickly and see the results quickly. Networked
action games also need a fast network. It’s no fun if your
game console reacts slowly, allowing other players with
a faster network connection to get the jump on you. For
applications like this, an exchange protocol that’s con-
stantly opening and closing connections (like HTTP does)
wouldn’t be very effective.

When there’s a one-to-one connection between two
objects, it’s easy to establish a tight feedback loop. When
there are multiple objects involved, though, it gets harder.
To begin with, you have to consider how the network of
connections between all the objects will be configured. Will
it be a star network, with all the participants connected
through a central server? Will it be a ring network? Will
it be a many-to-many network, where every object has
a direct connection to every other object? Each of these
configurations has different effects on the feedback loop
timing. In a star network, the objects on the edge of the
network aren’t very busy, but the central one is. In a ring

network, every object shares the load more or less equally,
but it can take a long time for a message to reach objects
on opposite sides of the ring. In a direct many-to-many
network, the load is equally distributed, but each object
needs to maintain a lot of connections.

In most cases where you have a limited number of objects
in conversation, it’s easiest to manage the exchange using
a central server. The most common program example of
this is a text-based chat server like IRC (Internet Relay
Chat), or AOL’s instant messenger servers (AIM). Server
programs that accept incoming clients and manage text
messages between them in real time are often referred
to as chat servers. The Processing program you’ll write
in this chapter is a variation on a chat server. The server
will listen for new connections and exchange messages
with all of the clients that connect to it. Because there’s
no guarantee how long messages take to pass through
the Internet, the exchange of messages can’t be instanta-
neous. But as long as you’ve got a fast network connection
for both clients and server, the feedback loop will be faster
than human reaction time.
X

In every interactive system, there’s a feedback loop: you take action, the system
responds, you see the response, or a notification of it, and you take another action.
In some systems, the timing of that loop can be very loose. In other applications,
the timing must be tight.

MTT_Chapter5.indd Sec1:148MTT_Chapter5.indd Sec1:148 8/29/07 10:14:41 AM8/29/07 10:14:41 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 149

Transmission Control Protocol: Sockets & Sessions

For example, think about the exchanges between a web
client and server that you saw in the last two chapters. The
pipe is opened when the server acknowledges the client’s
contact, and remains open until the server has finished
sending the data.

There’s a lot going on behind the scenes of a socket con-
nection. The exchange of data over a TCP connection can
range in size anywhere from a few bytes to a few terabytes
or more. All that data is sent in discrete packets, and the
packets are sent by the best route from one end to the
other.

NOTE: “Best” is a deliberately vague term: the optimal route is

calculated differently by different network hardware, and involves

a variety of metrics (such as the number of hops between two

points as well as the available bandwidth and reliability of a

given path).

The period between the opening of a socket and the suc-
cessful close of the socket is called a session. During the
session, the program that maintains the socket tracks the
status of the connection (open or closed) and the port
number; counts the number of packets sent and received;
notes the order of the packets and sees to it that packets
are presented in the right order, even if the later packets
arrive first; and accounts for any missing packets by
requesting that they be re-sent. All of that is taken care of
for you when you use a TCP/IP stack like the Net library in
Processing or the firmware on the Lantronix devices you
first saw in Chapter 4.

The complexity of TCP is worthwhile when you’re exchang-
ing critical data. For example, in an email, every byte is a
character in the message. If you drop a couple of bytes,
you could lose crucial information. The error checking of

TCP does slow things down a little, though, and if you want
to send messages to multiple receivers, you have to open a
separate socket connection to each one.

There’s a simpler type of transmission protocol that’s also
common on the net called the User Datagram Protocol, or
UDP. Where TCP communication is based on sockets and
sessions, UDP is based only on the exchange of packets.
You’ll learn more about it in Chapter 7.
X

Each time a client connects to a web server, the connection that’s opened uses a
protocol called Transmission Control Protocol, or TCP. TCP is a protocol that specifies how
objects on the Internet open, maintain, and close a connection that will involve multiple
exchanges of messages. The connection made between any two objects using TCP is
called a socket. A socket is like a pipe joining the two objects. It allows data to flow back
and forth between them as long as the connection is maintained. Both sides need to
keep the connection open in order for it to work.

MTT_Chapter5.indd Sec1:149MTT_Chapter5.indd Sec1:149 8/31/07 11:03:38 AM8/31/07 11:03:38 AM

www.it-ebooks.info

http://www.it-ebooks.info/

150 MAKING THINGS TALK

A Networked Game
Networked games are a great way to learn about real time connections. This project is a
networked variation on pong. In honor of everyone’s favorite network status command,
let’s call it call it ping pong. The server will be a Processing program, and the clients
will be physical interfaces that connect through Lantronix serial-to-Ethernet (or Wi-Fi)
modules. The clients and the server’s screen have to be physically near each other so
that everyone can see the screen. In this case, you’re using a network for its flexibility in
handling multiple connections, not for its ability to connect remote places.

From the Monski pong project in Chapter 2, you’re already
familiar with the methods needed to move the paddles
and the ball, so some of the code will be familiar to you.
As this is a more complex variation, it’s important to start
with a good description of the whole system. The system
will work like this:

• The game has two teams of multiple players.
• Each player can move a paddle back and forth. The

paddles are at the top and bottom of the screen, and
the ball moves from top to bottom.

• Players connect to the game server through a TCP
connection. Every time a player connects, another
paddle is added to the screen. New connections
alternate between the top and bottom teams. When
a player connects, the server replies with the following
string: hi, followed by a carriage return and a line feed
(shown as \r\n).

• The client can send the following commands:
• l (ASCII value 108): move left
• r (ASCII value 114): move right
• x (ASCII value 120): disconnect

• When the client sends x, the server replies with the
following string, and then ends the socket connection:

 bye\r\n

And that’s the communications protocol for the whole
game. Keep in mind that it doesn’t define anything about
the physical form of the client object. As long as the client
can make a TCP connection to the server and can send
and receive the appropriate ASCII messages, it can work
with the server. You can attach any type of physical inputs
to the client, or you can write a client that sends all these
messages automatically, with no physical input from the
world at all (though that would be boring). Later in this
chapter, you’ll see a few different clients, each of which
can connect to the server and play the game.

Project 7

A Test Server
You need a server to get started. There’s a lot of code to
control the pong display that you don’t need right now
(you just want to confirm that the clients can connect). You
can start out by using the test server from Chapter 4. It will
let you listen for new clients, and send them messages by
typing in the applet window that appears when you run the
program. Run the server and open a telnet connection to
it. Remember, it’s listening on port 8080, so if your com-
puter’s IP address is, say, 192.168.1.45, then you’d connect
like so: telnet 192.168.1.45 8080

If you’re telnetting in from the same machine, you can use:
telnet localhost 8080, or telnet 127.0.0.1 8080.

Whatever you type in the telnet window will show up in
the server’s debugger pane, and whatever you type in
the server’s applet window will show up at the client’s
command line. This result is useful, as it lets you use telnet
as a test client later on. Next, you’ll build a client and test it
by getting it to connect to this server.

NOTE: If you want to get away with building only one client, you

can telnet from a computer to connect to the server (telnet

ip-address 8080). However, you’ll have to press Return after each

command (r, l, or x), unless you make a change after you connect.

On Mac OS X or Linux, press the telnet escape key combination

(Control-]), type the following, and then press Return:

mode character

On Windows telnet should not require any special configuration,

but if you find otherwise, press Control-], type the following,

and press Return twice:

set mode stream

NOTE: You’ll now find that the server will accept commands

immediately without requiring you to press Return after each one.

MTT_Chapter5.indd Sec1:150MTT_Chapter5.indd Sec1:150 8/29/07 10:49:29 AM8/29/07 10:49:29 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 151

Program State What to do

Disconnected from the server Try to connect

Connecting to the server Read bytes in, wait for a Connect message

Connected to the server Play the game by sending l, r, or x

The client needs a few basic inputs in order to reach any
of these states:

• An input for sending a connect message. The same
input can be used to send a disconnect message.

• An input for sending a left message.
• An input for sending a right message.

To let the user know what the client device is doing, add
some outputs to indicate its state:

• An output to indicate whether the client is connected to
the server.

• An output to indicate when the connect/disconnect
button is pressed.

• An output to indicate when it’s sending a left message.
• An output to indicate when it’s sending a right message.

It’s always a good idea to put outputs on the client
that indicate when it receives input from the user. For
example, pressing the connect/disconnect button doesn’t
guarantee a connection, so it’s important to separate the
output that acknowledges a button push from the one that
indicates successful connection. If there’s a problem, this
helps the user to determine whether the problem is with
the connection to the server, or with the client object itself.
In this application, the person using the client can look at
the server’s screen to see the state of the client. She can
see a new paddle appear when her client connects, and
she can see her paddle moving back and forth. In many
cases, however, there’s no way to get confirmation from
the server except through the client, so local feedback is
essential.

It’s also good to indicate the client’s status using outputs.
You can see in the code that follows that in addition to indi-
cating when the sensors are triggered, you’ll also indicate
whether the client is connected or disconnected. If this
client had a more complex set of potential states, you’d
need better indication.

The Clients

Like the air quality meter
client in Chapter 4, the
pong client has a few
states that you care about:

For this project, I built two different clients. They have
different methods of physical interaction and different
input sensors, but they both behave the same way to the
server. You can build either, or both, or use the principles
from them to build your own. Building both and comparing
the two will give you an idea of how the same protocol can
result in very different behavior. One of these clients is
much more responsive than the other, but the responsive-
ness has nothing to do with the communications protocol.
It’s all in the sensing and in the player’s action.
X

MTT_Chapter5.indd Sec1:151MTT_Chapter5.indd Sec1:151 8/29/07 11:04:47 AM8/29/07 11:04:47 AM

www.it-ebooks.info

http://www.it-ebooks.info/

152 MAKING THINGS TALK

MATERIALS FOR CLIENT 1

1 Lantronix embedded device server available
from many vendors, including Symmetry Electronics
(www.semiconductorstore.com), part number
CO-E1-11AA (Micro) or WM11A0002-01 (WiMicro),
or XP1001001-03R (XPort)
1 RJ45 breakout board SparkFun (sparkfun.com)
part number BOB-00716 (needed only if you're
using an XPort)
1 3.3V regulator The LM7833 from SparkFun,
part number COM-00526, or the MIC2940A-3.3WT
from Digi-Key, part number 576-1134-ND, will each
work well.
1 solderless breadboard such as Digi-Key
(digikey.com) part number 438-1045-ND, or
Jameco (www.jameco.com) part number 20601
1 Arduino module or other microcontroller
4 LEDs It’s best to use at least two colors with
established semantics: a big red one, a big
green one, and two others of whatever color
suits your fancy.
1 accelerometer The circuit shown uses an
ADXL330 accelerometer, available in a module
from SparkFun (part number SEN-00692), but
most any analog accelerometer should do the job.
1 push button Use one that’s robust and can
stand a good stomping.
1 pencil box
1 pipe, 2- to 3-inches in diameter, approximately
6–8 inches long Wood, sturdy cardboard, or
sturdy plastic will work.
1 plank of scrap wood

»

»

»

»

»
»

»

»

»
»

»

Client #1: A Seesaw Client
This client is basically a seesaw, as shown in

Figure 5-1. The basic structure is a plank mounted on a
piece of pipe. The electronics sit in a case at the center
of the plank. The user puts her feet on either end of the
plank and balances her weight on the plank. As she tilts to
the left, the client sends a left message. As she tilts right,
it sends a right message. The pushbutton in the center
allows her to connect to the server or disconnect by
stomping on it. Use a sturdy button for this, and make sure
that the LEDs are out of foot-stomping range.

In Chapter 4, you saw the Lantronix Micro in action. In this
chapter and the following ones, you’ll see the Lantronix
XPort. The XPort is smaller than the Micro module, and
operates on 3.3 volts instead of 5 volts. Its input pins can
tolerate 5 volts, though, so it’s easy to interface to a 5-volt
microcontroller. There are no other significant differences,
so you can use the Micro if you prefer. For the purposes
of these projects, the two are functionally identical — use
whichever you please.

The circuit for the seesaw client uses an accelerometer to
read the tilt of the seesaw. The one shown in Figure 5-2 is
a three-axis accelerometer, but you’ll only use one axis.
You can use a different accelerometer if you choose, as
long as it outputs an analog voltage for tilt along one axis.

Because the XPort’s pins don’t fit nicely in a breadboard,
you need the RJ45 breakout board. Figure 5-3 shows the
XPort mounted on the breakout board.

A pencil box from your friendly neighborhood stationery
store works well as a case for this project. Drill holes in
the lid for the switch and the LED, cut holes in the side for
the XPort and Arduino jacks, and you’re all set. Figure 5-4
shows the outside of the pencil box case, and Figure 5-5
shows the inside and a detail of the wiring to the switches
and LEDs. The configuration for the XPort is identical to
the one for the Micro in Chapter 4:

*** Channel 1

Baudrate 9600, I/F Mode 4C, Flow 00

Port 10001

Remote IP Adr: --- none ---, Port 00000

Connect Mode : D4

Disconn Mode : 00

Flush Mode : 00

As you’re using a Lantronix device again, the code for the
client has some elements in common with the code for
the air quality meter in Chapter 4. You’ll reuse the device
Connnect() method, the resetDevice() method, and the
blink() method from that application.

MTT_Chapter5.indd Sec1:152MTT_Chapter5.indd Sec1:152 8/29/07 11:05:16 AM8/29/07 11:05:16 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 153

Figure 5-1
The seesaw client. Note the red
and green LEDs to indicate left and
right tilt. This client follows nautical
tradition port (left) is red, and
starboard (right) is green. Feel free
to be less jaunty in your own choices,
as long as they’re clear.

Figure 5-2
The seesaw client schematic. The
detail photos on the following page
show the wiring on the breadboard.

MTT_Chapter5.indd Sec1:153MTT_Chapter5.indd Sec1:153 8/29/07 11:05:53 AM8/29/07 11:05:53 AM

www.it-ebooks.info

http://www.it-ebooks.info/

154 MAKING THINGS TALK

Figure 5-3
The XPort mounted on an RJ45 breakout board. A
couple of dabs of hot glue on the breakout board serve
as spacers to keep the metal of the XPort’s case from
contacting the outside pins on the breakout board.

Figure 5-2

» continued from previous page
The seesaw client detail photos. The schematic is
shown on the previous page.

A. To Xport B. To Arduino C. LED outputs D. Reset

A

B

C

D
Switch imput
(connection
not shown)

TX
RX

RX
TX

MTT_Chapter5.indd Sec1:154MTT_Chapter5.indd Sec1:154 11/6/07 3:59:21 PM11/6/07 3:59:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 155

Figure 5-4
The outside of the seesaw
control box, and the
connectors.

Figure 5-5
Inside the box, showing the
wiring to the LEDs and the
switch in the box cover.

MTT_Chapter5.indd Sec1:155MTT_Chapter5.indd Sec1:155 8/29/07 11:10:32 AM8/29/07 11:10:32 AM

www.it-ebooks.info

http://www.it-ebooks.info/

156 MAKING THINGS TALK

/*

 pong client

 Language: Wiring/Arduino

 This program enables an Arduino to control one paddle in a

 networked pong game.

 */

// defines for the Lantronix device's status (used for staus variable):

#define disconnected 0

#define connected 1

#define connecting 2

// defines for I/O pins:

#define connectButtonPin 2

#define rightLED 3

#define leftLED 4

#define connectionLED 5

#define connectButtonLED 6

#define deviceResetPin 7

First, start with the
variable declarations and

definitions. From the preceding expla-
nation of the program’s states and the
inputs and outputs earlier, this is all
straightforward:

// variables:

int inByte= -1; // incoming byte from serial RX

int status = disconnected; // Lantronix device's connection status

// variables for the sensors:

byte connectButton = 0; // state of the exit button

byte lastConnectButton = 0; // previous state of the exit button

/*

 When the connect button is pressed, or the accelerometer passes

 the left or right threshold, the client should send a message to the

 server. The next two variables get filled with a value when either

 of those conditions is met. Otherwise, they are set to 0.

 */

byte paddleMessage = 0; // message sent to make a paddle move

byte connectMessage = 0; // message sent to connect or disconnect

You need global variables to handle
the serial communication, track the
sensors, and keep track of the state of
the client:

8

void setup() {

 // set the modes of the various I/O pins:

 pinMode(connectButtonPin, INPUT);

 pinMode(rightLED, OUTPUT);

 pinMode(leftLED, OUTPUT);

 pinMode(connectionLED, OUTPUT);

 pinMode(connectButtonLED, OUTPUT);

 pinMode(deviceResetPin, OUTPUT);

 // start serial port, 9600 8-N-1:

The setup() method just sets all
the I/O modes, starts the serial port,
and resets the Lantronix device:

8

»

 Try It

MTT_Chapter5.indd Sec1:156MTT_Chapter5.indd Sec1:156 8/29/07 11:11:57 AM8/29/07 11:11:57 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 157

Continued from opposite page.

void loop() {

 // read the inputs:

 readSensors();

 // set the indicator LEDS:

 setLeds();

 // check the state of the client and take appropriate action:

 stateCheck();

}

In the main loop, you read the
sensors, set the indicator LEDs, and
take an action that depends on the
state that the client’s in:

8

void readSensors() {

 // thresholds for the accelerometer values:

 int leftThreshold = 500;

 int rightThreshold = 420;

 // read the X axis of the accelerometer:

 int x = analogRead(0);

 // let the analog/digital converter settle:

 delay(10);

 // if the accelerometer has passed either threshold,

 // set paddleMessage to the appropriate message, so it can

 // be sent by the main loop:

 if (x > leftThreshold) {

 paddleMessage = 'l';

 } else if (x < rightThreshold) {

 paddleMessage = 'r';

 } else {

 paddleMessage = 0;

 }

Read the sensors (both the
accelerometer and the connect/
disconnect switch) using a method
called readSensors(). It determines
the state of the sensors and indicates
the results by setting the values of the
connectMessage and paddleMessage
variables.

Send a message only when the
accelerometer tilts far enough to the
left or right. To discover the thresholds
for left and right, write a simple
program that just reads the analog
input that the accelerometer is
attached to and print it out. Then
get on the seesaw and rock back and
forth while watching the values.

The one I used for this example gave
a reading of approximately 450 when
it was level, and tilted to above 500
to the left, and below 420 to the right.
Your results may vary. Based on those
values, here’s the readSensors()
method:

8

 Serial.begin(9600);

 // reset the Lantronix device:

 resetDevice();

 // blink the exit button LED to signal that we're ready for action:

 blink(3);

}

Change these values to match the
values for your own accelerometer.
8

MTT_Chapter5.indd Sec1:157MTT_Chapter5.indd Sec1:157 8/29/07 11:12:21 AM8/29/07 11:12:21 AM

www.it-ebooks.info

http://www.it-ebooks.info/

158 MAKING THINGS TALK

void setLeds() {

 // This should happen no matter what state the client is in,

 // to give local feedback every time a sensor senses a change.

 // set the L and R LEDs if the sensor passes the appropriate threshold:

 switch (paddleMessage) {

 case 'l':

 digitalWrite(leftLED, HIGH);

 digitalWrite(rightLED, LOW);

 break;

 case 'r':

 digitalWrite(rightLED, HIGH);

 digitalWrite(leftLED, LOW);

 break;

 case 0:

 digitalWrite(rightLED, LOW);

 digitalWrite(leftLED, LOW);

 }

 // set the connect button LED based on the connectMessage:

 if (connectMessage !=0) {

 digitalWrite(connectButtonLED, HIGH);

 }

 else {

 digitalWrite(connectButtonLED, LOW);

 }

 // set the connection LED based on the client's status:

 if (status == connected) {

 // turn on the connection LED:

 digitalWrite(connectionLED, HIGH);

 }

 else {

 // turn off the connection LED:

 digitalWrite(connectionLED, LOW);

 }

}

Once you’ve checked the sensors,
you can set the LED indicators:

8

 // read the connectButton, look for a low-to-high change:

 connectButton = digitalRead(connectButtonPin);

 connectMessage = 0;

 if (connectButton == HIGH) {

 if (connectButton != lastConnectButton) {

 // turn on the exit button LED to let the user

 // know that he or she hit the button:

 digitalWrite(connectButtonLED, HIGH);

 connectMessage = 'x';

 }

 }

 // save the state of the exit button for next time you check:

 lastConnectButton = connectButton;

}

You can’t just send a message
every time the connect button is high.
You want to send a message only when
the button changes from low to high,
indicating that the player just pressed
it. This code block checks for a low-to-
high transition by comparing the state
of the button with its previous state:

8

MTT_Chapter5.indd Sec1:158MTT_Chapter5.indd Sec1:158 8/29/07 11:14:51 AM8/29/07 11:14:51 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 159

Next, take action depending on the
state of the client and the messages to
be sent:

8 void stateCheck() {

 // Everything in this method depends on the client's status:

 switch (status) {

 case connected:

 // if you're connected, listen for serial in:

 while (Serial.available() > 0) {

 // if you get a 'D', it's from the Lantronix device,

 // telling you that it lost the connection:

 if (Serial.read() == 'D') {

 status = disconnected;

 }

 }

 // if there's a paddle message to send, send it:

 if (paddleMessage != 0) {

 Serial.print(paddleMessage);

 // reset paddleMessage to 0 once you've sent the message:

 paddleMessage = 0;

 }

 // if there's a connect message to send, send it:

 if (connectMessage != 0) {

 // if you're connected, disconnect:

 Serial.print(connectMessage);

 // reset connectMessage to 0 once you've sent the message:

 connectMessage = 0;

 }

 break;

 case disconnected:

 // if there's a connect message, try to connect:

 if (connectMessage !=0) {

 deviceConnect();

 // reset connectMessage to 0 once you've tried to connect:

 connectMessage = 0;

 }

 break;

 // if you sent a connect message but haven't connected, keep trying:

 case connecting:

 // read the serial port:

 if (Serial.available()) {

 inByte = Serial.read();

 // if you get a 'C' from the Lantronix device, then you're connected:

 if (inByte == 'C') {

 status = connected;

 }

 else { // if you got anything other than a C, try again:

 deviceConnect();

 }

 }

 break;

 }

}

MTT_Chapter5.indd Sec1:159MTT_Chapter5.indd Sec1:159 8/29/07 11:17:07 AM8/29/07 11:17:07 AM

www.it-ebooks.info

http://www.it-ebooks.info/

160 MAKING THINGS TALK

Client #2: A Stepper Client
For Client #2, I wanted to see whether there’s a big differ-
ence between a foot-based input device that requires you
to balance and one that you can stand on easily. I found
an exercise stepper in the trash that had a missing screen,
but the steps still worked. So I attached force-sensing
resistors to the foot pads and made a second client.
The rest of the client’s functionality is the same as the
seesaw client.

The stepper client, shown in Figure 5-6, is very similar to
the seesaw client. The only difference is that the acceler-
ometer has been replaced by two force-sensing resistors.
You can see the FSRs at the back of the foot pads. After
much experimenting, I found that I got the most reliable
results when the sensors were under the heels. They lift
off the pads when you step, giving a nice range of contrast
to the readings.

void deviceConnect() {

 /*

 send out the server address and

 wait for a "C" byte to come back.

 fill in your personal computer's numerical address below:

 */

 Serial.print("C192.168.1.20/8080\n\r");

 status = connecting;

}

// Take the Lantronix device's reset pin low to reset it:

void resetDevice() {

 digitalWrite(deviceResetPin, LOW);

 delay(50);

 digitalWrite(deviceResetPin, HIGH);

 // pause to let Lantronix device boot up:

 delay(2000);

}

// Blink the connect button LED:

void blink(int howManyTimes) {

 for (int i=0; i< howManyTimes; i++) {

 digitalWrite(connectButtonLED, HIGH);

 delay(200);

 digitalWrite(connectButtonLED, LOW);

 delay(200);

 }

}

Finally, here are the device
Connect(), resetDevice(), and blink()
methods mentioned earlier. Be sure
to replace 192.168.1.20 with the IP
address of the computer running
the Processing server and 8080 with
the port number that the server is
listening on:

That’s the whole client. Once you’ve
assembled the client, compile and run
this code on it, and attempt to connect
to the test server. You should see it
make connections and send messages
based on the state of the client and the
values from the sensors. If you don’t,
use the troubleshooting methods at
the end of Chapter 4 to determine
what’s wrong. For the full code, see
Appendix C.

8

The physical construction for the stepper client is almost
identical to the seesaw client, You can use the same pencil
box case with the same LED setup. Just drill two holes for
the leads to the FSRs and you’re all set.

The code for the stepper client is also very similar to the
seesaw client. All you have to change is the readSensors()
method. Everything else stays the same. That’s the beauty
of using a clear, simple protocol: it doesn’t matter what the
physical input is, as long you can map changes recorded
by the sensors to a left-right movement, and program the
microcontroller to send the appropriate messages. It’s
worthwhile to try building both these clients, or one of
your own, to look at how different physical affordances can
affect the performance of different clients, even though it
“appears” the same to the server.

You will need to change this to

the IP address and port that your

Processing server is running on.

8

MTT_Chapter5.indd Sec1:160MTT_Chapter5.indd Sec1:160 8/29/07 11:17:28 AM8/29/07 11:17:28 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 161

MATERIALS FOR CLIENT 2

1 Lantronix embedded device server Available from many vendors, including
Symmetry Electronics (www.semiconductorstore.com) as part number
CO-E1-11AA (Micro), WM11A0002-01 (WiMicro), or XP1001001-03R (XPort)
1 RJ45 breakout board SparkFun part number BOB-00716 (needed only if
you're using an XPort)
1 3.3V regulator The LM7833 (SparkFun part number COM-00526) or the
MIC2940A-3.3WT (Digi-Key part number 576-1134-ND) will work well.
1 solderless breadboard such as Digi-Key part number 438-1045-ND or
Jameco (www.jameco.com) part number 20601
1 Arduino module or other microcontroller
4 LEDs For semantic reasons, it’s best to use a big red one, a big green one,
and two others of whatever color suits your fancy.
2 force-sensing resistors (FSRs)
1 pushbutton Use one that’s robust and can stand a good stomping.
1 pencil box
1 exercise stepper The one I found in the trash was a Sharper Image model,
but you could also fake it with two foot-size wooden blocks mounted on foam
rubber, with the FSRs mounted on the top of the blocks.

»

»

»

»

»
»

»
»
»
»

Figure 5-6
The stepper client.

MTT_Chapter5.indd Sec1:161MTT_Chapter5.indd Sec1:161 8/29/07 11:17:49 AM8/29/07 11:17:49 AM

www.it-ebooks.info

http://www.it-ebooks.info/

162 MAKING THINGS TALK

Figure 5-7
The stepper client
circuit.

A. To FSRs B. To analog input

B

A

MTT_Chapter5.indd Sec1:162MTT_Chapter5.indd Sec1:162 8/29/07 11:18:36 AM8/29/07 11:18:36 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 163

The Server
The tasks to be handled by the server can be

divided into two groups: tasks related to the game play,
like animating the paddles and the ball and scoring, and
tasks related to tracking new clients. To manage it all
most effectively, you’re going to use an object-oriented
programming approach. If you’ve never done this before,
there are a few basics you need to know in advance.

Anatomy of a Player Object
The most important thing to know is that all objects have
properties and behaviors. You can think about an object’s
properties in much the same way as you think about
physical properties. For example, a pong paddle has width
and height, and it has a location, which you can express

void readSensors() {

 int threshold = 500;

 int left = analogRead(0);

 delay(10);

 int right = analogRead(1);

 delay(10);

 if (left >= right + threshold) {

 paddleMessage = 'l';

 } else if (right >=left + threshold) {

 paddleMessage = 'r';

 } else {

 paddleMessage = 0;

 }

 // read the connectButton, look for a low-to-high change:

 connectButton = digitalRead(connectButtonPin);

 connectMessage = 0;

 if (connectButton == HIGH) {

 if (connectButton != lastConnectButton) {

 digitalWrite(connectButtonLED, HIGH);

 connectMessage = 'x';

 }

 }

 lastConnectButton = connectButton;

}

The next listing is the readSensors()
method for the stepper client. All
the rest of the code for this client is
identical to the previous client. Just
as with the seesaw client, you have
to discover experimentally what the
thresholds for your sensors are, so you
may need to write a short program to
do that. In this case, the left and right
sensors are electrically identical, so
they should produce similar values
when subjected to similar forces (for
example, your left foot and your right
foot). So one threshold value will
do the job for both.

You can test this client the same way
you did the last one, using the test
server program shown earlier. Once
you’re sure it’s sending messages
correctly, it’s time to write the ping
pong server.

8

in terms of its horizontal and its vertical position. In your
game, the paddles will have another important property:
each paddle will be associated with a client. Of course,
clients have properties as well, so each paddle will inherit
from its client an IP address. You’ll see all of these in the
code that defines a paddle as an object.

A paddle also has a characteristic behavior: it moves left
or right. That behavior will be encoded into the paddle as a
method called movePaddle(). This behavior will update the
properties of the paddle that define its location. A second
behavior called showPaddle() will actually draw the paddle
in its current location. You’ll see later why these are kept
separate.

public class Player {

 // declare variables that belong to the object:

 float paddleH, paddleV;

 Client client;

To define an object in
Processing (and in Java),

create a code block called a class. Here’s
the beginning of the class that defines a
player in the pong server:

 Code It

Change this value to match

the value for your own sensors.

8

MTT_Chapter5.indd Sec1:163MTT_Chapter5.indd Sec1:163 8/31/07 11:04:56 AM8/31/07 11:04:56 AM

www.it-ebooks.info

http://www.it-ebooks.info/

164 MAKING THINGS TALK

That’s all the code to define a Player. Put this
code at the end of your program (shown next),

just as if it were another method. To make a new Player
object, write something like Player newPlayer = new
Player(h, v, thisClient).

When you do this, the new Player, and all its instance
variables and methods, are accessible through the variable
called newPlayer (the new Player is not actually stored
in this variable; it’s stuffed away in a portion of memory
somewhere that you can get at through the newPlayer
variable). Keep an eye out for this in the program.

 public Player (int hpos, int vpos, Client someClient) {

 // initialize the local instance variables:

 paddleH = hpos;

 paddleV = vpos;

 client = someClient;

 }

Here’s the constructor for the
Player class. It comes right after the
instance variables in your code. As you
can see, it just takes the values you
give it when you call for a new Player
and assigns them to variables that
belong to an instance (an individual
player) of the class:

8

The variables declared at the beginning of the class as
shown in the example are called instance variables. Every
new instance of the class created makes its own copies
of these variables. Every class has a constructor method.
This method gets called to call the object into existence.

You’ve already used constructors. When you made a
new Serial port in Processing, you called the constructor
method for the Serial class with something like myPort =
new Serial(this, portNum, portSpeed).

 public void movePaddle(float howMuch) {

 float newPosition = paddleH + howMuch;

 // constrain the paddle's position to the width of the window:

 paddleH = constrain(newPosition, 0, width);

 }

 public void showPaddle() {

 rect(paddleH, paddleV, paddleWidth, paddleHeight);

 // display the address of this player near its paddle

 textSize(12);

 text(client.ip(), paddleH, paddleV - paddleWidth/8);

 }

}

Next come the two other methods
mentioned earlier, movePaddle() and
showPaddle(). As you can see, they
use the instance variables (paddleH,
paddleV, and client) that belong to
the object to store the location of the
paddle, and to draw it:

8

The Main pong Server Program
Before you write the code for the server as a whole, it’s
useful to make a map of what happens. Figure 5-8 shows
the main tasks and functions. A few details are left out for
clarity’s sake, but what’s clear are the main relationships
between the methods that run the program (setup(),
draw(), and serverEvent()) and the Player objects. As
with any program, the setup() method kicks things off,
then the draw() method takes over. The latter sees to
it that the screen is updated and listens to any existing
clients. If a new client connects, a serverEvent() message
is generated, which causes the method of that name to
run. That method creates new Player objects. The draw()
method takes advantage of the behaviors inside the Player
objects to move and draw their paddles.

This bracket closes the class8

MTT_Chapter5.indd Sec1:164MTT_Chapter5.indd Sec1:164 8/29/07 11:19:36 AM8/29/07 11:19:36 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 165

01

?

MTT_Chapter5.indd Sec1:165MTT_Chapter5.indd Sec1:165 8/29/07 11:20:20 AM8/29/07 11:20:20 AM

www.it-ebooks.info

http://www.it-ebooks.info/

166 MAKING THINGS TALK

// include the net library:

import processing.net.*;

// variables for keeping track of clients:

int port = 8080; // the port the server listens on

Server myServer; // the server object

ArrayList playerList = new ArrayList(); // list of clients

// variables for keeping track of the game play and graphics:

int ballSize = 10; // the size of the ball

int ballDirectionV = 2; // the ball's horizontal direction

 // left is negative, right is positive

int ballDirectionH = 2; // the ball's vertical direction

 // up is negative, down is positive

int ballPosV, ballPosH; // the ball's vertical/horizontal and vertical

positions

boolean ballInMotion = false; // whether or not the ball should be moving

int topScore, bottomScore; // scores for the top team and the bottom teams

int paddleHeight = 10; // vertical dimension of the paddles

int paddleWidth = 80; // horizontal dimension of the paddles

int nextTopPaddleV; // paddle positions for the next player

 // to be created

int nextBottomPaddleV;

boolean gameOver = false; // whether or not a game is in progress

float delayCounter = millis(); // a counter for the delay after

 // a game is over

long gameOverDelay = 4000; // pause after each game

long pointDelay = 2000; // pause after each point

The first thing to do in
the server program itself is to
define the variables. They’re
grouped here by those needed
for keeping track of clients
versus those needed for
managing the graphics of the
game play:

8

This program uses a Java class, ArrayList, that’s not explained in the Processing reference guide.

Think of it as a super-duper array. ArrayLists don’t have a fixed number of elements to begin with,

so you can add new elements as the program continues. It’s useful when you don’t know how many

elements you’ll have. In this case, you don’t know how many clients you’ll have, so you’ll store them

in an ArrayList, and add each new client to the list as it connects. ArrayLists include some other

useful methods. For more on ArrayList and other Java classes, check out Head First Java (O’Reilly,

2005) or the online documentation at java.sun.com.

8

MTT_Chapter5.indd Sec1:166MTT_Chapter5.indd Sec1:166 8/31/07 11:05:44 AM8/31/07 11:05:44 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 167

void setup() {

 // set up all the pong details:

 pongSetup();

 // start the server:

 myServer = new Server(this, port);

}

The setup() method starts the
server and calls pongSetup(), which
sets all the initial conditions for
the game:

8

void pongSetup() {

 // set the window size:

 size(480, 640);

 // set the frame rate:

 frameRate(90);

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 18);

 textFont(myFont);

 // set the default font settings:

 textFont(myFont, 18);

 textAlign(CENTER);

 // initalize paddle positions for the first player.

 // these will be incremented with each new player:

 nextTopPaddleV = 50;

 nextBottomPaddleV = height - 50;

 // initialize the ball in the center of the screen:

 ballPosV = height / 2;

 ballPosH = width / 2;

 // set no borders on drawn shapes:

 noStroke();

 // set the rectMode so that all rectangle dimensions

 // are from the center of the rectangle (see Processing reference):

 rectMode(CENTER);

}

Here’s the pongSetup() method :8

void draw() {

 pongDraw();

 listenToClients();

}

The draw() method updates
the screen using a method called
pongDraw(), and listens for any
messages from existing clients using
a method called listenToClients().

8

MTT_Chapter5.indd Sec1:167MTT_Chapter5.indd Sec1:167 8/29/07 11:21:13 AM8/29/07 11:21:13 AM

www.it-ebooks.info

http://www.it-ebooks.info/

168 MAKING THINGS TALK

// The ServerEvent message is generated when a new client

// connects to the server.

void serverEvent(Server someServer, Client someClient) {

 boolean isPlayer = false;

 if (someClient != null) {

 // iterate over the playerList:

 for (int p = 0; p < playerList.size(); p++) {

 // get the next object in the ArrayList and convert it

 // to a Player:

 Player thisPlayer = (Player)playerList.get(p);

 // if thisPlayer's client matches the one that

 // generated the serverEvent,

 // then this client is already a player:

 if (thisPlayer.client == someClient) {

 // we already have this client

 isPlayer = true;

 }

 }

 // if the client isn't already a Player, then make a new Player

 // and add it to the playerList:

 if (!isPlayer) {

 makeNewPlayer(someClient);

 }

 }

}

When new clients connect to the
server, the net library’s serverEvent()
method is called automatically; your
Processing sketch must implement
this method in order to respond to the
event. It uses the new client to create
a new Player object using a method
called makeNewPlayer(). Here’s the
serverEvent() method:

8

void makeNewPlayer(Client thisClient) {

 // paddle position for the new Player:

 int h = width/2;

 int v = 0;

 /*

 Get the paddle position of the last player on the list.

 If it's on top, add the new player on the bottom, and vice versa.

 If there are no other players, add the new player on the top.

 */

 // get the size of the list:

 int listSize = playerList.size() - 1;

 // if there are any other players:

 if (listSize >= 0) {

 // get the last player on the list:

 Player lastPlayerAdded = (Player)playerList.get(listSize);

 // if the last player's on the top, add to the bottom:

 if (lastPlayerAdded.paddleV == nextTopPaddleV) {

 nextBottomPaddleV = nextBottomPaddleV - paddleHeight * 2;

 v = nextBottomPaddleV;

 }

Now that you’ve seen the
draw()and the serverEvent() methods,
it’s time to look at the methods they
call. It’s best to start with the creation
of a new Player, so here’s the make
NewPlayer() method. It checks the
number of players so far created by
counting the number of Players in the
ArrayList called playerList. If there’s
an even number of Players, the new
Player is added to the top team, and is
positioned below the last top player. If
there’s an odd number of Players, the
new one goes on the bottom team.
The variables nextTopPaddleV and
nextBottomPaddleV keep track of
the positions for the next players on
each team.

Here’s the makeNewPlayer()method:

8

»

MTT_Chapter5.indd Sec1:168MTT_Chapter5.indd Sec1:168 8/29/07 11:21:35 AM8/29/07 11:21:35 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 169

Continued from opposite page.

 // if the last player's on the bottom, add to the top:

 else if (lastPlayerAdded.paddleV == nextBottomPaddleV) {

 nextTopPaddleV = nextTopPaddleV + paddleHeight * 2;

 v = nextTopPaddleV;

 }

 } else { // if there are no players, add to the top:

 v = nextTopPaddleV;

 }

 // make a new Player object with the position you just calculated

 // and using the Client that generated the serverEvent:

 Player newPlayer = new Player(h, v, thisClient);

 // add the new Player to the playerList:

 playerList.add(newPlayer);

 // Announce the new Player:

 print("We have a new player: ");

 println(newPlayer.client.ip());

 newPlayer.client.write("hi\r\n");

}

void listenToClients() {

 // get the next client that sends a message:

 Client speakingClient = myServer.available();

 Player speakingPlayer = null;

 // iterate over the playerList to figure out whose

 // client sent the message:

 for (int p = 0; p < playerList.size(); p++) {

 // get the next object in the ArrayList, convert it to a Player:

 Player thisPlayer = (Player)playerList.get(p);

 // compare the client of thisPlayer to the client that sent a message;

 // if they're the same, then this is the Player we want:

 if (thisPlayer.client == speakingClient) {

 speakingPlayer = thisPlayer;

 }

 }

 // read what the client sent:

 if (speakingPlayer != null) {

 int whatClientSaid = speakingPlayer.client.read();

 /* There a number of things it might have said that we care about:

 x = exit

 l = move left

 r = move right

 */

 switch (whatClientSaid) {

 case 'x': // If the client says "exit", disconnect it

Once a new Player has been
created, you need to listen continuously
for that Player’s client to send any
messages. The more often you check
for messages, the tighter the interac-
tive loop between sensor and action.

The listenToClients() method, called
continuously from the draw() method,
listens for messages from clients. If
there’s data available from any client,
this method takes action. First it
iterates over the list of Players to see
whether each one’s client is speaking.
Then it checks to see whether the
client sent any of the game messages
(that is, l for left, r for right, or x for
exit). If any of those messages was
received, the program acts on the
message appropriately.

8

»

MTT_Chapter5.indd Sec1:169MTT_Chapter5.indd Sec1:169 8/29/07 11:21:56 AM8/29/07 11:21:56 AM

www.it-ebooks.info

http://www.it-ebooks.info/

170 MAKING THINGS TALK

Continued from previous page.

 // say goodbye to the client:

 speakingPlayer.client.write("bye\r\n");

 // disconnect the client from the server:

 println(speakingPlayer.client.ip() + "\t left");

 myServer.disconnect(speakingPlayer.client);

 // remove the client's Player from the playerList:

 playerList.remove(speakingPlayer);

 break;

 case 'l': // if the client sends an "l", move the paddle left

 speakingPlayer.movePaddle(-10);

 break;

 case'r': // if the client sends a "r", move the paddle right

 speakingPlayer.movePaddle(10);

 break;

 }

 }

}

So far you’ve seen how the server receives new
connections (using serverEvent()), creates new

Players from the new clients (using makeNewPlayer()),
and listens for messages (using listenToClients()). That
covers the interaction between the server and the clients.
In addition, you’ve seen how the Player class defines all
the properties and methods that are associated with each
new player. Finally, it’s time to look at the methods for
controlling the drawing of the game. pongDraw(), called

from the draw() method, is the main method for this.
This method has four tasks:

• Iterate over the playerList and draw all the paddles
at their most current positions.

• Draw the ball and the score.
• If the game is over, show a “Game Over” message

and pause.
• Pause after each volley, then serve the ball again.

void pongDraw() {

 background(0);

 // draw all the paddles

 for (int p = 0; p < playerList.size(); p++) {

 Player thisPlayer = (Player)playerList.get(p);

 // show the paddle for this player:

 thisPlayer.showPaddle();

 }

Here is the pongDraw()
method:

You saw earlier that the listenToClients()
method actually updates the positions
of the paddles using the movePaddle()
method from the Player object.

 // calculate ball's position:

 if (ballInMotion) {

 moveBall();

 }

 // draw the ball:

 rect(ballPosH, ballPosV, ballSize, ballSize);

 // show the score:

 showScore();

That method doesn’t actually draw
the paddles, but this one does, using
ach Player’s showPaddle() method. This
is why the two methods are separated
in the object. Likewise, the moveBall()
method, called here, checks to see if the
ball hit a paddle or a wall, and calculates
its new position from there, but doesn’t
draw the ball itself, as the ball needs to
be drawn even if it’s not in motion:

8

 Show It

MTT_Chapter5.indd Sec1:170MTT_Chapter5.indd Sec1:170 8/29/07 11:23:32 AM8/29/07 11:23:32 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 171

 // if the game is over, show the winner:

 if (gameOver) {

 textSize(24);

 gameOver = true;

 text("Game Over", width/2, height/2 - 30);

 if (topScore > bottomScore) {

 text("Top Team Wins!", width/2, height/2);

 }

 else {

 text("Bottom Team Wins!", width/2, height/2);

 }

 }

 // pause after each game:

 if (gameOver && (millis() > delayCounter + gameOverDelay)) {

 gameOver = false;

 newGame();

 }

If the game is over, the program
stops the serving and displays the
winner for four seconds:

8

 // pause after each point:

 if (!gameOver && !ballInMotion && (millis() > delayCounter + pointDelay))

{

 // make sure there are at least two players:

 if (playerList.size() >=2) {

 ballInMotion = true;

 }

 else {

 ballInMotion = false;

 textSize(24);

 text("Waiting for two players", width/2, height/2 - 30);

 }

 }

}

After each point is scored, the
program takes a two-second pause. If
there aren’t at least two players after
that pause, it doesn’t serve another
ball. This is to keep the game from
running when there’s no one to play:

That closes out the pongDraw()
method itself. It calls a few other
methods: moveBall(), which calculates
the ball’s trajectory; showScore(),
which shows the score; and
newGame(), which resets the game.

8

void moveBall() {

 // check to see if the ball contacts any paddles:

 for (int p = 0; p < playerList.size(); p++) {

 // get the player to check:

 Player thisPlayer = (Player)playerList.get(p);

 // calculate the horizontal edges of the paddle:

 float paddleRight = thisPlayer.paddleH + paddleWidth/2;

 float paddleLeft = thisPlayer.paddleH - paddleWidth/2;

 // check to see if the ball is in the horizontal range of the paddle:

 if ((ballPosH >= paddleLeft) && (ballPosH <= paddleRight)) {

 // calculate the vertical edges of the paddle:

 float paddleTop = thisPlayer.paddleV - paddleHeight/2;

 float paddleBottom = thisPlayer.paddleV + paddleHeight/2;

The first thing moveBall() does is
to check if the position of the ball inter-
sects any of the Players’ paddles. To
do this, it has to iterate over playerList,
pull out each Player, and check to see if
the ball position is contained within the
rectangle of the paddle. If the ball does
intersect a paddle, then its vertical
direction is reversed:

8

»

MTT_Chapter5.indd Sec1:171MTT_Chapter5.indd Sec1:171 8/29/07 11:25:30 AM8/29/07 11:25:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

172 MAKING THINGS TALK

 // if the ball goes off the screen top:

 if (ballPosV < 0) {

 bottomScore++;

 ballDirectionV = int(random(2) + 1) * -1;

 resetBall();

 }

 // if the ball goes off the screen bottom:

 if (ballPosV > height) {

 topScore++;

 ballDirectionV = int(random(2) + 1);

 resetBall();

 }

 // if any team goes over 5 points, the other team loses:

 if ((topScore > 5) || (bottomScore > 5)) {

 delayCounter = millis();

 gameOver = true;

 }

If the ball goes above the top of the
screen or below the bottom, then one
team or the other has scored:

8

Continued from previous page.

 // check to see if the ball is in the horizontal range of the paddle:

 if ((ballPosV >= paddleTop) && (ballPosV <= paddleBottom)) {

 // reverse the ball vertical direction:

 ballDirectionV = -ballDirectionV;

 }

 }

 }

 // stop the ball going off the left or right of the screen:

 if ((ballPosH - ballSize/2 <= 0) || (ballPosH +ballSize/2 >=width)) {

 // reverse the y direction of the ball:

 ballDirectionH = -ballDirectionH;

 }

 // update the ball position:

 ballPosV = ballPosV + ballDirectionV;

 ballPosH = ballPosH + ballDirectionH;

}

Finally, moveBall() checks to see
whether the ball hits one of the sides
of the screen. If so, the horizontal
direction is reversed:

8

void newGame() {

 gameOver = false;

 topScore = 0;

 bottomScore = 0;

}

The newGame() method just stops
the game play and resets the scores:

8

MTT_Chapter5.indd Sec1:172MTT_Chapter5.indd Sec1:172 8/29/07 11:25:54 AM8/29/07 11:25:54 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 173

public void showScore() {

 textSize(24);

 text(topScore, 20, 40);

 text(bottomScore, 20, height - 20);

}

The showScore() method prints
the scores on the screen:

8

void resetBall() {

 // put the ball back in the center

 ballPosV = height/2;

 ballPosH = width/2;

 ballInMotion = false;

 delayCounter = millis();

}

Finally, moveBall() calls a method
called resetBall(), that resets the ball at
the end of each point. Here it is:

For the final code, see Appendix C.

8

The beauty of this server is that it doesn’t
really care how many clients log into it;

everyone gets to play ping pong. There’s nothing in the
server program that limits the response time for any client,
either. The server attempts to satisfy everyone a soon as
possible. This is a good habit to get in. If there’s a need
to limit the response time in any way, don’t rely on the
server of the network to do that. Whenever possible, let
the network and the server remain dumb, fast, and reliable,
and let the clients decide how fast they want to send data
across. Figure 5-9 shows a screenshot of the server with
two clients.

Once you’ve got the clients speaking with the server, try
designing a new client of your own. See if you can make
the ultimate ping pong paddle.
X

Figure 5-9
The output of the ping pong server sketch.

MTT_Chapter5.indd Sec1:173MTT_Chapter5.indd Sec1:173 8/29/07 11:26:23 AM8/29/07 11:26:23 AM

www.it-ebooks.info

http://www.it-ebooks.info/

174 MAKING THINGS TALK

Conclusion

The client should also place a priority on listening, but
it has to juggle listening to the server with listening to
the physical inputs. It should always give a clear and
immediate response to local input, and it should indicate
the state of the network connection at all times.

The protocol that the objects in this system speak to each
other should be as simple and as flexible as possible.
Leave room to add commands, because you never know
when you might decide to add something. Make sure to
build in responses where appropriate, like the “hi” and
“bye” responses from the server. Keep the messages
unambiguous, and if possible, keep them short as well.

Finally, make sure you’ve got a reliable way to test the
system. Simple tools like the telnet client and the test
server will save you much time in building every multi-
player server, and help you get to the fun sooner.

Now you’ve seen examples of both asynchronous client-
server exchanges (the HTTP system in Chapter 4) and
synchronous exchanges (the chat server here). With those
two tools, you can build almost any application in which
there’s a central server and a number of clients. For the
next chapter, you’ll step away from the Internet and take a
look at various forms of wireless communication.
X

The basic structure of the clients and server in this chapter can be used any time that
you want to make a system that manages synchronous connections between several
objects on the network. The server’s main jobs are to listen for new clients, to keep track
of the existing clients, and to make sure that the right messages reach the right clients.
It must place a priority on listening at all times.

« At right

Jin-Yo Mok's
original sketches of
the music box.

» At left

The music
box composition
interface.

MTT_Chapter5.indd Sec1:174MTT_Chapter5.indd Sec1:174 8/29/07 11:26:47 AM8/29/07 11:26:47 AM

www.it-ebooks.info

http://www.it-ebooks.info/

COMMUNICATING IN (NEAR) REAL TIME 175

MTT_Chapter5.indd Sec1:175MTT_Chapter5.indd Sec1:175 8/29/07 11:27:29 AM8/29/07 11:27:29 AM

www.it-ebooks.info

http://www.it-ebooks.info/

176 MAKING THINGS TALK

MTT_Chapter6.indd Sec1:176MTT_Chapter6.indd Sec1:176 8/29/07 11:33:52 AM8/29/07 11:33:52 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Wireless Communication
If you’re like most people interested in this area, you’ve been reading

through the early chapters thinking, “but what about wireless?” Perhaps

you’re so eager that you just skipped straight to this chapter. If you did,

go back and read the rest of the book! In particular, if you’re not familiar

with serial communication between computers and microcontrollers,

you’ll want to read Chapter 2 before you read this chapter. This chapter

explains the basics of wireless communication between objects. In it,

you’ll learn about two types of wireless communication, and build some

working examples.

6
MAKE: PROJECTS

Alex Beim's Zygotes (www.tangibleinteraction.com) are lightweight inflatable rubber balls lit from within
by LED lights. The balls change color in reaction to pressure on their surface, and communicate with a central
computer using ZigBee radios. A network of zygotes at a concert allows the audience to have a direct effect
not only on the balls themselves, but also on the music and video projections to which they are networked.
Photo courtesy of Alex Beim.

MTT_Chapter6.indd Sec1:177MTT_Chapter6.indd Sec1:177 8/31/07 11:06:48 AM8/31/07 11:06:48 AM

www.it-ebooks.info

http://www.it-ebooks.info/

178 MAKING THINGS TALK

Why Isn’t Everything Wireless?
The advantage of wireless communication seems obvious at first: no wires! This makes
physical design much simpler for any project where the devices have to move and
talk to each other. Wearable sensor systems, digital musical instruments, and remote
control vehicles are all simplified physically by wireless communication. However, there
are some limits to wireless communication that you should consider before going wireless.

Wireless communication is never as reliable
as wired communication

You have less control over the sources of interference.
You can insulate and shield a wire carrying data com-
munications, but you can never totally isolate a radio or
infrared wireless link. There will always be some form of
interference, so you must make sure that all the devices
in your system know what to do if they get a garbled
message, or no message at all, from their counterparts.

Wireless communication is never just
one-to-one communication

The radio and infrared devices mentioned here
broadcast their signals for all to hear. Sometimes that
means they interfere with the communication between
other devices. For example, Bluetooth, most Wi-Fi radios
(802.11b, g, and n) and ZigBee (802.15.4) radios all work
in the same frequency range, 2.4 gigahertz. They’re
designed to not cause each other undue interference,
but if you have a large number of ZigBee radios working
in the same space as a busy Wi-Fi network, for example,
you’ll get interference.

Wireless communication does not mean wireless power
You still have to provide power to your devices, and if
they’re moving, this means using battery power. Batteries
add weight, and they don’t last forever. The failure of a
battery when you’re testing a project can cause all kinds
of errors that you might attribute to other causes. A
classic example of this is the Mystery Radio Error. Many

radios consume extra power when they’re transmitting.
This causes a slight dip in the voltage of the power source.
If the radio isn’t properly decoupled with a capacitor
across its power and ground leads, the voltage can dip
low enough to make the radio reset itself. The radio may
appear to function normally when you’re sending it serial
messages, but it will never transmit, and you won’t know
why. When you start to develop wireless projects, it’s
good practice to make sure that you have the communi-
cation working first using a regulated, plugged-in power
supply, and then create a stable battery supply.

Wireless communication generates
electromagnetic radiation

This is easy to forget about, but every radio you use
emits electromagnetic energy. The same energy that
cooks your food in a microwave sends your mp3 files
across the Internet. And while there are many studies
indicating that it’s safe at the low operating levels of the
radios used here, why add to the general noise if you
don’t have to?

Make the wired version first
The radio and IR transceivers discussed here are
replacements for the communications wires used in
previous chapters. Before you decide to add wireless
to any application, it’s important to make sure you’ve
got the basic exchange of messages between devices
working over wires first.
X

The early part of this chapter covers how wireless works,
and what makes it stop working, giving you some back-
ground and starting places for troubleshooting. The
second half of the chapter contains examples. The topic
is so broad, even a survey of several different devices only

begins to cover the tip of the iceberg. For that reason, the
exercises in this chapter will be less fully developed appli-
cations than the previous ones. Instead, you’ll just get the
basic “Hello World!” example for several different forms of
wireless device.
X

MTT_Chapter6.indd Sec1:178MTT_Chapter6.indd Sec1:178 8/29/07 11:37:57 AM8/29/07 11:37:57 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 179

Two Flavors of Wireless: Infrared and Radio
There are two common types of wireless communication in most people’s lives: infrared
light communication and radio communication. The main difference between them
from a user’s or developer’s position is their directionality.

Television remote controls typically use infrared (IR) com-
munication. Unlike radio, it’s dependent on the orientation
between transmitter and receiver. There must be a clear
line of sight between the two. Sometimes IR can work by
bouncing the beam off another surface, but it’s not as
reliable. Ultimately, the receiver is an optical device, so it
has to “see” the signal. Car door openers, mobile phones,
garage door remote controls, and many other devices
use radio. All of these work whether the transmitter and
receiver are facing each other or not. They can even
operate through walls, in some cases. In other words, their
transmission is omnidirectional. Generally, IR is used for
short-range line-of sight applications, and radio is used for
everything else.

Transmitters, Receivers,
and Transceivers
There are three types of devices common to both IR and
RF systems: transmitters, which send a signal, but can’t
receive one; receivers, which can receive a signal, but can’t
send one; and transceivers, which can do both. You may
wonder why everything isn’t a transceiver, as it’s the most
flexible device. The answer is that it’s more complex and
more expensive to make a transceiver than it is to make
either of the other two. In a transceiver, you have to make
sure the receiver is not receiving its transmitter’s trans-
mission, or they’ll interfere with each other and not listen
to any other device. When you buy a transceiver that does
this for you, you pay for the convenience. For many appli-
cations, it’s cheaper to just use a transmitter-receiver pair,
and handle any errors by just transmitting the message
many times until the receiver gets the message. That’s
how TV remote controls work, for example. It makes the
components much cheaper.

It’s increasingly common, especially in radio, to just make
everything a transceiver, and incorporate a microcontroller
to manage the transmitter-receiver juggling. All Bluetooth,
ZigBee, and Wi-Fi radios work this way. However, it’s still
possible to get transmitter-receiver pair radios, and they

are still considerably cheaper than their transceiver
counterparts. The first two projects in this chapter use
transmitter-receiver pairs.

Keep in mind the distinction between transmitter-receiver
pairs and transceivers when you plan your projects, and
when you shop. Start by asking yourself whether the com-
munication in your project has to be two-way, or whether
it can be one-way only. If it’s one-way, ask yourself what
happens if the communication fails. Can the receiver
operate without asking for clarification? Can the problem
be solved by transmitting repeatedly until the message is
received? If the answer is yes, then you might be able to
use a transmitter-receiver pair and save some money.

How Infrared Works
IR communication works by pulsing an IR LED at a set
data rate and receiving the pulses using an IR photodi-
ode. It’s simply serial communication transmitted using
infrared light. Since there are many everyday sources of IR
light (the sun, incandescent light bulbs, any heat source),
it’s necessary to differentiate the IR data signal from other
IR energy. To do this, the serial output is sent to an oscil-
lator before it’s sent to the output LED. The wave created
by the oscillator, called a carrier wave, is a regular pulse
that’s modulated by the pulses of the data signal. The
receiver picks up all IR light, but filters out anything that’s
not vibrating at the carrier frequency. Then it filters out the
carrier frequency so that all that’s left is the data signal.
This method allows you to transmit data using infrared
light without getting interference from other IR light
sources, unless they happen to be oscillating at the same
frequency as your carrier wave.

The directional nature of infrared makes it more limited
than radio, but cheaper than radio, and requires less
power. As radios get cheaper, more power-efficient, and
more robust, it’s less common to see an IR port on a
computer or PDA, but it’s still both cost-effective and
power-efficient for line-of-sight remote control applications.

MTT_Chapter6.indd Sec1:179MTT_Chapter6.indd Sec1:179 8/29/07 11:38:16 AM8/29/07 11:38:16 AM

www.it-ebooks.info

http://www.it-ebooks.info/

180 MAKING THINGS TALK

Data protocols for the IR remote controls of most home
electronics vary from manufacturer to manufacturer. To
decode them, you need to know both the carrier frequency
and the message structure. Most commercial IR remote
control devices operate using a carrier wave between
38 and 40 kHz. The frequency of the carrier wave limits
the rate at which you can send data on that wave, so IR
transmission is usually done at a low data rate, typically
between 500 and 2000 bits per second. It’s not great
for high-bandwidth data transmission, but if you’re only
sending the values of a few pushbuttons on a remote,
it’s acceptable. Unlike the serial protocols you’ve seen so
far in this book, IR protocols do not all use an 8-bit data
format. For example, Sony’s Control-S protocol has three
formats: a 12-bit, a 15-bit, and a 20-bit format. Philips’ RC5
format, common to many remotes, uses a 14-bit format.

If you have to send or receive remote control signals, you’ll
save a lot of time by looking for a specialty IR modulator

chip to do the job, rather than trying to recreate the
protocol yourself. Fortunately, there are many helpful sites
on the web to explain the various protocols. Reynolds Elec-
tronics (www.rentron.com) has many helpful tutorials, and
sells a number of useful IR modulators and demodulators.
EPanorama has a number of useful links describing many
of the more common IR protocols at www.epanorama.
net/links/irremote.html.

If you’re building both the transmitter and receiver, your
job is fairly straightforward. You just need an oscillator
through which you can pass your serial data to an infrared
LED, and a receiver that listens for the carrier wave and
demodulates the data signal. It’s possible to build your
own IR modulator using a 555 timer IC, but there are a
number of inexpensive modules you can buy to modulate
or demodulate an IR signal, as shown in this next project.
X

Even though you can’t see infrared light, cameras can. If you’re not sure whether your IR LED is working, one quick way to

check is to point the LED at a camera and look at the resulting image. You’ll see the LED light up. Here's a look at the IR LED in a

home remote control, viewed through a webcam attached to a personal computer. You can even see this in the LCD viewfinder

of a digital camera. If you try this with your IR LED, you may need to turn the lights down to see this effect.

Having a camera at hand is useful when troubleshooting IR projects.

Making Infrared Visible

MTT_Chapter6.indd Sec1:180MTT_Chapter6.indd Sec1:180 8/29/07 11:38:34 AM8/29/07 11:38:34 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 181

This example uses custom IR transmitter
and receiver ICs (integrated circuits) from
Reynolds Electronics to establish a one-
way link between transmitter and receiver.
This transmitter-receiver pair can operate
up to 19200 bits per second, much faster
than normal household remote controls.

MATERIALS

1 solderless breadboard such as Digi-Key
(www.digikey.com) part number 438-1045-ND, or
Jameco (www.jameco.com) part number 20601
1 Arduino module or other microcontroller
1 USB-to-TTL serial adaptor SparkFun’s
BOB-00718 from Chapter 2 will do the job
(www.sparkfun.com). If you use a USB-to-RS-232
adaptor such as a Keyspan or Iogear dongle, refer
to Chapter 2 for the schematics to convert RS-232
to TTL serial.
1 IR transmitter IC Reynolds (www.rentron.com)
part number TX-IRHS
1 20MHz ceramic resonator with internal caps
for use with the IR transmitter IC, from Reynolds
1 infrared LED Reynolds part number TSAL7200,
or any other IR LED will do the job.
1 high-speed IR detector module Reynolds
(www.rentron.com) part number TSOP7000
1 100-ohm resistor
1 220-ohm resistor
1 potentiometer

»

»
»

»

»

»

»

»
»
»

In this example, you’ll connect the IR transmitter and a
potentiometer to your microcontroller. The receiver will
connect to your personal computer through a USB-to-
serial adaptor. The microcontroller will continually send
the potentiometer’s value to the receiving computer.

You could also build this project with two microcontrollers,
of course, but it’s good practice to test the modules on a
PC first so that can you troubleshoot the circuit and test
the range of your IR transmitter and receiver. In testing,
I got about 12 feet (nearly 4 meters) of range with this
system.

There are two circuits for this project: the transmitter, which
is connected to a microcontroller, and the receiver, which
is connected to your computer via a USB-to-serial adaptor.

The transmitter’s connections:
1. Voltage: to 5V
2. Oscillator 1: to ceramic resonator pin 1
3. Oscillator 2: to ceramic resonator pin 3
4. Duty cycle select: to ground. This sets the duty cycle of

the carrier wave.
5. Data inversion select: to ground. This setting specifies

whether the transmitter sends data as true (logic 0 =
0V, logic 1 = 5V), or inverted (logic 0 = 5V, logic 1 = 0V).

6. Data out: sends data out to IR LED
7. Data in: to microcontroller TX
8. Ground: to ground

The receiver’s connections:
1. Data out: to the USB-to-serial adaptor’s receive

(RX) line
2. Ground: to ground
3. Voltage: to 5V power through a 100-ohm resistor

Figures 6-1 and 6-2 show the transmitter and receiver.

Infrared Transmitter-Receiver Pair

Project 8

MTT_Chapter6.indd Sec1:181MTT_Chapter6.indd Sec1:181 8/29/07 11:39:15 AM8/29/07 11:39:15 AM

www.it-ebooks.info

http://www.it-ebooks.info/

182 MAKING THINGS TALK

/*

 IR transmit example

 Language: Wiring/Arduino

*/

void setup(){

 // open the serial port at 19200 bps:

 Serial.begin(19200);

}

void loop(){

 // read the analog input:

 int analogValue = analogRead(0);

 // send the value out via the transmitter:

 Serial.println(analogValue, DEC);

 // delay 10ms to allow the analog-to-digital receiver to settle:

 delay(10);

}

Once you’ve got the circuit
connected, transmission is

very straightforward. Here’s a program
that transmits the value of a potenti-
ometer:

Once you’ve got this code running on
your microcontroller, connect the IR
receiver circuit to your computer. Then
open your serial terminal program and
connect to the circuit at 19200 bits per
second. You should see the value of
the potentiometer printed in the serial
terminal window like so:

127

128

128

129

130

129

As you can see, serial communication over infrared isn’t that different than serial

communication over a wire. You can send data in only one direction, so you can’t use a

handshaking protocol, and you’re limited to the data rate of your transmitter-receiver

pair. Otherwise, you won’t have to make any major code changes to use IR.

8

D

C

B

A

A. TSOP7000 receiver B. 20MHz resonator C. TX-IRHS transmitter D. IR LED

 Try It

Figure 6-1
At left, a TSOP7000 IR receiver connected to a USB-to-serial adaptor. At right, a TX-IRHS infrared transmitter connected to a
microcontroller. A potentiometer is attached to an analog input of the microcontroller. The microcontroller sends the value of the
pot to the serial adaptor via IR communication. You can see the wiring diagrams for this on the opposite page.

MTT_Chapter6.indd Sec1:182MTT_Chapter6.indd Sec1:182 8/29/07 11:39:36 AM8/29/07 11:39:36 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 183

!

Figure 6-2

Top: the transmitter.

Bottom: the receiver.

MTT_Chapter6.indd Sec1:183MTT_Chapter6.indd Sec1:183 8/31/07 11:07:33 AM8/31/07 11:07:33 AM

www.it-ebooks.info

http://www.it-ebooks.info/

184 MAKING THINGS TALK

How Radio Works
Radio relies on the electrical property called induction. Any
time you vary the electrical current in a wire, you generate
a corresponding magnetic field that emanates from the
wire. This changing magnetic field induces an electrical
current in any other wires in the field. The frequency of the
magnetic field is the same as the frequency of the current
in the original wire. This means that if you want to send a
signal without a wire, you can generate a changing current
in one wire at a given frequency and attach a circuit to the
second wire to detect current changes at that frequency.
That’s how radio works.

The distance that you can transmit a radio signal depends
on the signal strength, the sensitivity of the receiver, the
nature of the antennas, and any obstacles that block the
signal. The stronger the original current and the more
sensitive the receiver, the farther apart the sender and
receiver can be. The two wires act as antennas. Any
conductor can be an antenna, but some work better than
others. The length and shape of the antenna and the
frequency of the signal all affect transmission. Antenna
design is a whole field of study on its own, so I can’t do it
justice here, but a rough rule of thumb for a straight wire
antenna is as follows:

Antenna length
5,616 in. / frequency in MHz

Antenna length
14,266.06 cm. / frequency MHz

For more information, consult the technical specifications
for the specific radios you’re using. Instructions on making
a good antenna are common in a radio’s documentation.

Radio Transmission: Digital and Analog
As with everything else in the microcontroller world, it’s
important to distinguish between digital and analog radio
transmission. Analog radios simply take an analog elec-
trical signal such as an audio signal, and superimpose it
on the radio frequency in order to transmit it. The radio
frequency acts as a carrier wave, carrying the audio signal.
Digital radios superimpose digital signals on the carrier
wave, so there must be a digital device on either end to
encode or decode those signals. In other words, digital
radios are basically modems, converting digital data to
radio signals, and radio signals back into digital data.

Radio Interference
Though radio is omnidirectional, it can be blocked by
obstacles, particularly metal ones. A large metal sheet, for
example, will reflect a radio signal rather than allowing it to
pass through. This principle is used not only in designing
antennas, but also in designing shields. If you’ve ever cut
open a computer cable and encountered a thin piece of
foil wrapped around the inside wires, you’ve encountered
a shield. Shields are used to prevent random radio signals
from interfering with the data being transmitted down a
wire. A shield doesn’t have to be a solid sheet of metal,
though. A mesh of conductive metal will block a radio
signal as well, if the grid of the mesh is small enough. The
effectiveness of a given mesh depends on the frequency
it’s designed to block. In fact, it’s possible to block radio
signals from a whole space by surrounding the space with
an appropriate shield and grounding the shield. You’ll hear
this referred to as making a Faraday cage. A Faraday cage
is just an enclosure that’s shielded to be radio-free. The
effect is named after the physicist Michael Faraday, who
first demonstrated and documented it.

Sometimes radio transmission is blocked by unintentional
shields. If you’re having trouble getting radio signals
through, look for metal that might be shielding the signal.
Transmitting from inside a car can sometimes be tricky
because the car body acts as a Faraday cage. Putting the
antenna on the outside of the car improves reception.
This is true for just about every radio housing.

All kinds of electrical devices emit radio waves as side
effects of their operation. Any alternating current can
generate a radio signal, even the AC that powers your
home or office. This is why you get a hum when you
lay speaker wires in parallel with a power cord. The AC
signal is inducing a current in the speaker wires, and
the speakers are reproducing the changes in current as
sound. Likewise, it’s why you may have trouble operating
a wireless data network near a microwave oven. Wi-Fi
operates at frequencies in the gigahertz range. That range
is commonly called the microwave range, because the
wavelength of those signals is only a few micrometers
long. Microwave ovens use those same frequencies,
transmitted at very high power, to cook food. Some of
that energy leaks from the oven at low power, which is
why you get all kinds of radio noise in the gigahertz range
around a microwave.

MTT_Chapter6.indd Sec1:184MTT_Chapter6.indd Sec1:184 8/29/07 11:40:32 AM8/29/07 11:40:32 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 185

Motors and generators are especially insidious sources of
radio noise. A motor also operates by induction; specifi-
cally, by spinning a pair of magnets around a shaft in the
center of a coil of wire. By putting a current in the wire, you
generate a magnetic field, and that attracts or repulses
the magnets, causing them to spin. Likewise, by using
mechanical force to spin the magnets, you generate a
current in the wire. So a motor or a generator is essentially
a little radio, generating noise at whatever frequency it’s
rotating.

Because there are so many sources of radio noise due to
the ubiquitous use of alternating currents, there are many
ways for a radio signal to be interfered with. It’s important
to keep these possible sources of noise in mind when you
begin to work with radio devices. Knowledge of common
interference sources, and knowing how to shield against
them, is a valuable tool in radio troubleshooting.

Multiplexing and Protocols
When you’re transmitting data via radio, anyone with
a compatible receiver can receive your signal. There’s
no wire to contain the signal, so if two transmitters are
sending at the same time, they will interfere with each
other. This is the biggest weakness of radio: a given
receiver has no way to know who sent the signal it’s
receiving. In contrast, consider a wired serial connection:
you can be reasonably sure when you receive an electri-
cal pulse on a serial cable that it came from the device
on the other end of the wire. You have no such guarantee
with radio. It’s as if you were blindfolded at a cocktail party
and everyone else there had the same voice. The only way
you’d have of knowing who was saying what is if everyone
were polite about not interrupting each other, clear about
beginning and ending their sentences, and identifying
themselves when they speak. In other words, it’s all
about protocols.

The first thing everyone at that cocktail party would have
to do is to agree on who speaks when. That way they could
all share your attention by dividing up the time they get.
Sharing in radio communication is called multiplexing, and
this form of sharing is called time division multiplexing.
Each transmitter gets a given time slot in which to
transmit.

Of course, it depends on all the transmitters being in
synch. When they’re not, time division multiplexing can
still work reasonably well if all the transmitters speak

much less than they listen (remember the first rule of
love and networking from Chapter 1: listen more than
you speak). If a given transmitter is transmitting for
only a few milliseconds in each second, and if there’s a
limited number of transmitters, the chance that any two
messages will overlap, or collide, is relatively low. This
guideline, combined with a request for clarification from
the receiver (rule number three), can ensure reasonably
good RF communication.

Back to the cocktail party. If every speaker spoke in a
different tone, you could distinguish them by their tones.
In radio terms, this is called frequency division multiplexing.
It means that the receiver has to be able to receive on
several frequencies simultaneously. But if there’s a coordi-
nator handing out frequencies to each pair of transmitters
and receivers, it’s reasonably effective.

Various combinations of time and frequency division
multiplexing are used in every digital radio transmission
system. The good news is that most of the time you never
have to think about it, because it’s handled for you by
many of the radios on the market today, including the
ones you’ll see shortly.

Multiplexing helps transmission by arranging for transmit-
ters to take turns and to distinguish themselves based on
frequency, but it doesn’t concern itself with the content of
what’s being said. This is where data protocols come in.
Just as you saw how data protocols made wired network-
ing possible, you’ll see them come into play here as well.
It’s common to use a data protocol on top of using multi-
plexing methods, to make sure that the message is clear.
For example, Bluetooth, ZigBee, and Wi-Fi are nothing
more than data networking protocols layered on top of a
radio signal. All three of them could just as easily be imple-
mented on a wired network (and in a sense, Wi-Fi is: it uses
the same TCP/IP layer that Ethernet uses). The principles
of these protocols are no different than those of wired
networks, which makes it possible to understand wireless
data transmission even if you’re not a radio engineer.
Remember the principles and troubleshooting methods
you used when dealing with wired networks, because
you’ll use them again in wireless projects. The methods
mentioned here are just new tools in your troubleshooting
toolkit. You’ll need them in the projects that follow.
X

MTT_Chapter6.indd Sec1:185MTT_Chapter6.indd Sec1:185 8/29/07 11:40:49 AM8/29/07 11:40:49 AM

www.it-ebooks.info

http://www.it-ebooks.info/

186 MAKING THINGS TALK

MATERIALS

1 solderless breadboard such as Digi-Key
part number 438-1045-ND or Jameco part
number 20601
1 Arduino module or other microcontroller
1 USB-to-TTL serial adaptor SparkFun’s
BOB-00718 from Chapter 2 will do the job. If you
use a USB-to-RS-232 adaptor such as a Keyspan
or Iogear dongle, refer to Chapter 2 for the
schematics to convert RS-232 to 5V TTL serial.
1 RF transmitter-receiver pair Available from
SparkFun as part number WRL-07813, but similar
models from the other retailers will work as well.
1 10KΩ potentiometer
2 0.1µF capacitors

»

»
»

»

»
»

When your project is simple enough to
work with one-way communication, but
you need the omnidirectionality that
radio affords, RF transmitter-receiver
pairs are the way to go. There are several
models on the market, from companies
like Abacom (www.abacomdirect.com),
Reynolds (www.rentron.com), Glolab
(www.glolab.com), and others. Most of
them are very simple to interface with a
microcontroller, requiring nothing more
than power, ground, and a connection to
the serial I/O lines of the controller. Many
of them even come with built-in antennas.
This example uses a TX/RX pair made by
Laipac, sold by SparkFun. The transmit-
ter and receiver both connect directly to a
microcontroller’s serial lines as described
above, and can operate at voltages in the
3.3V to 5V range.

In this example, you’ll connect the RF transmitter and a
potentiometer to your microcontroller. The receiver will
connect to your personal computer through a USB-to-serial
adaptor. The microcontroller will continually send the
potentiometer’s value to the receiving computer.

There are two circuits for this project: the transmitter,
which is connected to a microcontroller, and the receiver,
which is connected to your computer via a USB-to-serial
adaptor. The connections are as follows:

Transmitter
1. Ground
2. Data in: to microcontroller transmit pin
3. Voltage: to 5V
4. Antenna: to a 30cm piece of wire, acting as an antenna

Receiver
1. Ground
2. Data out: to USB-to-serial RX pin
3. Linear out: not connected
4. Voltage: to +5V
5. Voltage: to +5V. Be sure to put a 0.1µF capacitor across

voltage and ground to decouple the radio’s power
supply.

6. Ground
7. Ground
8. Antenna: to a 30cm piece of wire, which acts as an

antenna.

Figure 6-3 shows the transmitter, and Figure 6-4 shows
the receiver.

Radio Transmitter-Receiver Pair

Project 9

MTT_Chapter6.indd Sec1:186MTT_Chapter6.indd Sec1:186 8/29/07 11:41:11 AM8/29/07 11:41:11 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 187

Figure 6-3
RF transmitter connected to a microcontroller.
A potentiometer is connected to the micro-
controller’s analog input. The coil of wire is
the antenna.

A

A. RF transmitter B. 0.1 µF capacitor C. Antenna (30cm wire)

B

C

MTT_Chapter6.indd Sec1:187MTT_Chapter6.indd Sec1:187 8/29/07 11:41:32 AM8/29/07 11:41:32 AM

www.it-ebooks.info

http://www.it-ebooks.info/

188 MAKING THINGS TALK

Figure 6-4
RF receiver connected to a personal computer
via a USB-to-serial adaptor. The coil of wire is
the antenna.

C

A. RF receiver B. 0.1 µF capactior C. Antenna (30cm wire)

B

A

MTT_Chapter6.indd Sec1:188MTT_Chapter6.indd Sec1:188 8/29/07 11:41:58 AM8/29/07 11:41:58 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 189

When you’ve got the microcontroller pro-
grammed, open the serial port that the receiver

is connected to using your serial terminal program,
at 2400 bits per second (thus far you’ve operated at
9600 or 19200 bps. For this example, just set your serial
terminal program to communicate at 2400 bps instead
of 9600). You might see a string of garbage characters.
That’s because the transmitter started sending before the
receiver was activated. Reset the microcontroller while
the serial port is open. After a few seconds, it should start
sending again, and you should see a string of numbers
representing the potentiometer’s value, like this:

127

128

128

129

130

129

You may also get garbage characters on the screen, even
when the transmitter is turned off. This is because the
receiver’s picking up random noise in its frequency range.
This can be generated by a wide range of sources. All elec-
trical devices emit some RF waves, so if your receiver is

sitting beside an LCD or CRT display, for example, it could
be picking up noise from that. In the absence of a signal
from the transmitter, the receiver will display anything it
gets. This is one of the downsides of working with simple
transmitter-receiver pairs like this: you need to filter out
the garbage in your program. More advanced transceivers
like the ones in the next example will do some or all of that
filtering for you.

One simple way to filter out the noise is to limit your
transmission to a definite range of values. If you transmit
only in ASCII-encoded strings separated by commas,
linefeeds, or return characters, you can ignore any bytes
received that don’t fit within those values. Furthermore, if
you send the data in a particular format every time, your
receiving program can ignore any strings it receives that
don’t match the pattern. The bytes you’re receiving from
the example program are always in the ASCII numeral
range (“0” through “9”, or ASCII values 48 through 57), or a
linefeed and carriage return (ASCII 10 and 13). In addition,
the strings are never more than four digits long, because
the analog input value never exceeds 1023. So you can
test whether the bytes match the accepted values, and
whether the string is of the appropriate length.

/*

 RF Transmitter

 Language: Wiring/Arduino

 This program reads an analog input on pin 0

 and sends the result out as an ASCII-encoded string.

 The TX line of the microcontroller is connected to

 an RF transmitter that is capable of reading at 2400 bps.

 */

void setup(){

 // open the serial port at 2400 bps:

 Serial.begin(2400);

}

void loop(){

 // read the analog input:

 int analogValue = analogRead(0);

 // send the value out via the transmitter:

 Serial.println(analogValue, DEC);

 // delay 10ms to allow the analog-to-digital receiver to settle:

 delay(10);

}

Once you’ve got the circuit
connected, program the

microcontroller with the following
code, which reads the analog input
and sends its value out as an ASCII-
encoded string:

 Try It

MTT_Chapter6.indd Sec1:189MTT_Chapter6.indd Sec1:189 8/29/07 11:42:30 AM8/29/07 11:42:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

190 MAKING THINGS TALK

/*

 RF Receive

 Language: Processing

 This program listens for data coming in through a serial port.

 It reads a string and throws out any strings that contain values

 other than ASCII numerals, linefeed, or carriage return, or that

 are longer than four digits.

 This program is designed to work with a Laipac RF serial receiver

 connected to the serial port, operating at 2400 bps.

 */

import processing.serial.*;

Serial myPort; // the serial port

int incomingValue = 0; // the value received in the serial port

void setup() {

 // list all the available serial ports:

 println(Serial.list());

 // Open the appropriate serial port. On my computer, the RF

 // receiver is connected to a USB-to-serial adaptor connected to

 // the first port in the list. It may be on a different port on

 // your machine:

 myPort = new Serial(this, Serial.list()[0], 2400);

 // tell the serial port not to generate a serialEvent

 //until a linefeed is received:

 myPort.bufferUntil('\n');

}

void draw() {

 // set the background color according to the incoming value:

 background(incomingValue/4);

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 boolean validString = true; // whether the string you got is valid

 String errorReason = ""; // a string that will tell what went wrong

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // make sure you have a valid string:

Here’s a Processing
program that does

this. Close your serial terminal and try
this Processing program instead. Make
sure to change the serial port number
in this program to what-ever port you’re
using. All the interesting work is done
in the serialEvent() method:

Although the program is written
in Processing, the same algorithm
can work in other programming
environments.

»

 Tune In

MTT_Chapter6.indd Sec1:190MTT_Chapter6.indd Sec1:190 8/29/07 11:42:55 AM8/29/07 11:42:55 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 191

Now that you’ve seen the basics of sending serial data in one direction over a
radio link, the next example will demonstrate how to send it in two directions,

using a pair of RF transceivers. Even though the transceivers in the next example
incorporate their own error checking, you might want to keep this checking method
in mind, in case you need it.

 if (myString != null) {

 // trim off the whitespace (linefeed, carriage return) characters:

 myString = trim(myString);

 // check for garbage characters:

 for (int charNum = 0; charNum < myString.length(); charNum++) {

 if (myString.charAt(charNum) < '0' ||

 myString.charAt(charNum) > '9') {

 // you got a garbage byte; throw the whole string out

 validString = false;

 errorReason = "Received a byte that's not a valid ASCII numeral.";

 }

 }

 // check to see that the string length is appropriate:

 if (myString.length() > 4) {

 validString = false;

 errorReason = "Received more than 4 bytes.";

 }

 // if all's good, convert the string to an int:

 if (validString == true) {

 incomingValue = int(trim(myString));

 println("Good value: " + incomingValue);

 }

 else {

 // if the data is bad, say so:

 println("Error: Data is corrupted. " + errorReason);

 }

 }

}

Continued from opposite page.

MTT_Chapter6.indd Sec1:191MTT_Chapter6.indd Sec1:191 8/29/07 11:43:16 AM8/29/07 11:43:16 AM

www.it-ebooks.info

http://www.it-ebooks.info/

192 MAKING THINGS TALK

Radio Transceivers
In many cases, one-way communication isn’t enough. For example, you might have
noticed in the previous example that sometimes the message doesn’t get through,
even when you’ve got the circuitry and the code fully working. In that case, you might
want the PC to be able to query the microcontroller occasionally to see the state of
the inputs. Or perhaps you’re making an application in which there’s input and output
on both sides. In that case, transceivers are essential.

There are many different kinds of data transceivers on
the market. Some connect directly to the serial I/O of the
microcontroller and send the data as is. Some, like the
Bluetooth module you saw in Chapter 2, add an additional
protocol layer on top of the data communication, so you
have to be able to implement that protocol on both sender
and receiver. The cost of transceivers varies widely.

Until recently, most digital radio transceivers on the
market implemented only the most basic serial com-
munications protocol. For example, the RTF-DATA-SAW
transceivers from Abacom do a good job of sending and
receiving serial information. They connect directly to the
serial transmit and receive pins of your microcontroller.
Any serial data that you send out the transmit line goes
directly out as a radio signal. Any pulses received by the
transceiver are sent into your microcontroller’s receive
line. The benefit is that you don’t have to learn any serial
protocol — you can send data in any form you want. The
cost is that you have to manage the whole conversation
yourself. If the receiving transceiver misses a bit of data,
you’ll get a garbled message, just like you did with the
transmitter-receiver pair in the preceding project. Fur-
thermore, any radio device in the same frequency range
can affect the quality of your reception. As long as you’re
working with just two radios and no interference, trans-
ceivers like the RTF-DATA-SAW do a fine job. There are
other companies on the market who sell similar transceiv-
ers, including Linx Technologies (www.linxtechnologies.
com) and Low Power Radio Solutions (www.lprs.co.uk).

There are an increasing number of cheap transceivers
on the market that implement networking protocols,
handling the conversation management for you. The
Bluetooth modem in Chapter 2 ignored signals from other
radios that it wasn’t associated with, and took care of
error checking for you. The XBee radios you’ll use in the

next project will do the same, and much more, as you’ll
see in Chapter 7. These particular transceivers are in the
same general price range as the plain serial transceivers
mentioned earlier. They require you to learn a bit more in
terms of networking protocols, but the benefits you gain
make them well worth that minor cost.

There’s one other difference between the serial trans-
ceivers and the networked ones: the networked modules
tend to operate at much higher speeds, both in terms of
transmission frequency and serial data rate. For example,
the Abacom modules mentioned previously operate at
315 MHz and a maximum serial data rate of 9600 bits per
second. The XBee modules in the following project operate
at 2.4Ghz and up to 115,200 bits per second. Hence, the
XBee radios can send a message at nearly 100 times the
speed. Even if you’re sending only a few bytes per second,
this means that your transceiver can spend more time
listening and less time speaking, thus reducing the chance
that it’ll miss a given message from another transceiver.
X

MTT_Chapter6.indd Sec1:192MTT_Chapter6.indd Sec1:192 8/29/07 11:43:36 AM8/29/07 11:43:36 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 193

In this example, you’ll connect an RF
transceiver and a potentiometer to the
microcontroller. Each microcontroller will
send a signal to the other when its poten-
tiometer changes by more than ten points.
When either one receives a message, it
will light up an LED to indicate that it got
a message. Each device also has an LED
for local feedback as well.

MATERIALS

2 solderless breadboards such Digi-Key
part number 438-1045-ND or Jameco part
number 20601
1 USB-to-TTL serial adaptor SparkFun’s
PCB-BOB-00718 from Chapter 2 will do the job.
If you use a USB-to-RS-232 adaptor such as a
Keyspan or Iogear dongle, refer to Chapter 2 for the
schematics to convert RS-232 to 5V TTL serial.
2 Arduino modules or other microcontrollers
2 Maxstream XBee OEM RF modules available
from www.maxstream.net or www.gridconnect.
com, part number GC-WLM-XB24-A
2 XBee breakout boards or 2 XBee Arduino shields

For the breakout boards:
2 2mm breakout boards The XBee modules
listed here have pins spaced 2mm apart. To use
them on a breadboard, you’ll need a breakout board
that shifts the spacing to 0.1 inches. You could
solder wires on to every pin, or you could make or
purchase a printed circuit board that shifts the
pins. SparkFun’s Breakout Board for XBee Module
(part number BOB-08276) will do the trick.
4 rows of 0.1 inch header pins available from
most electronics retailers
4 2mm female header rows, Samtec (www.
samtec.com) part number MMS-110-01-L-SV.
Samtec, like many part makers, supplies free
samples of this part in small quantities.
SparkFun also offers header rows for the XBee
(part number PRT-08272).
2 potentiometers
2 1µF capacitors
2 10µF capacitors
6 LEDs

»

»

»
»

»

»

»

»

»
»
»
»

Duplex Radio Transmission

The RF transceivers used in this project implement the
802.15.4 wireless networking protocol on which ZigBee
is based. In this example, you won’t actually use any of
the benefits of ZigBee, and few of the 802.15.4 benefits.
802.15.4 and ZigBee are designed to allow many different
objects to communicate in a flexible networking scheme.
Each radio has an address, and every time it sends a
message, it has to specify the address to send to. It can
also send a broadcast message, addressed to every other
radio in range. You’ll see more of that in Chapter 7. For now,
you’ll give each of your two radios the other’s address, so
that they can pass messages back and forth.

As you may have discovered with the previous project,
there are many things that can go wrong with wireless
transmission, and as radio transmissions are not detectable
without a working radio, it can be difficult to troubleshoot.
Because of that, you’re going to build this project up in
stages. First you’ll communicate with the radio module
itself serially, in order to set its local address and destination
address. Then you’ll write a program for the microcontrol-
ler to make it send messages when the potentiometer
changes, and listen for the message to come through on
a second radio attached to your personal computer.
Finally, you’ll make two microcontrollers talk to each
other using the radios.

Project 10

!Step 1: Configuring the XBee
Modules Serially
The RF transceivers used in this project implement the
802.15.4 wireless networking protocol on which ZigBee
is based. In this example, you won’t actually use any of

the benefits of ZigBee, and few of the 802.15.4 benefits.
802.15.4 and ZigBee are designed to allow many different
objects to communicate in a flexible networking scheme.
Each radio has an address, and every time it sends a
message, it has to specify the address to send to. It can
also send a broadcast message, addressed to every other
radio in range. You’ll see more of that in Chapter 7. For now,
you’ll give each of your two radios the other’s address, so

MTT_Chapter6.indd Sec1:193MTT_Chapter6.indd Sec1:193 8/29/07 11:43:56 AM8/29/07 11:43:56 AM

www.it-ebooks.info

http://www.it-ebooks.info/

194 MAKING THINGS TALK

Figure 6-5
XBee radio attached to an FTDI USB-to-serial adaptor. The second photo
shows the wiring underneath the XBee board. Note that the LEDs attached
to the XBee have no resistors in series with them. The current out of the
XBee’s output pins is low enough to not burn up the LEDs.

MTT_Chapter6.indd Sec1:194MTT_Chapter6.indd Sec1:194 8/29/07 11:44:16 AM8/29/07 11:44:16 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 195

The XBee radios have pins spaced 2mm apart, which is too

narrow to fit on a breadboard. You can either solder wires to

each pin to extend the legs, or you can mount the module on

a breakout board. SparkFun has such a board: the Breakout

Board for XBee Module (part number BOB-08276). The

breakout board in Figure 6-6 is a custom-designed board

developed before there was a commercially available solution.

It’s functionally identical to the SparkFun board. You’ll need

two breakout boards for this project, one for each radio.

Once you’ve got the breakout board, solder headers to

the inner rows. These will plug into your breadboard. Next,

attach the radio to the breakout board. You can either solder

it directly or use 2mm female headers to mount it on. If you

solder the radio directly to the board, make sure that you

leave space between the radio and the inner header pins, so

they’re not touching. If they are, you will short the radio out.

Mounting the XBee Radios on a Breakout Board

Figure 6-6
XBee printed circuit board, in various
stages. Bottom left: bare board shown
from the bottom. Bottom right: board
with headers soldered to inner rows.
Top right: finished board with no female
sockets (radio is soldered directly to
the board). Top left: finished board with
female sockets.

that they can pass messages back and forth.

As you may have discovered with the previous project,
there are many things that can go wrong with wireless
transmission, and as radio transmissions are not detect-
able without a working radio, it can be difficult to trouble-
shoot. Because of that, you’re going to build this project up
in stages. First you’ll communicate with the radio module
itself serially, in order to set its local address and destina-
tion address. Then you’ll write a program for the microcon-
troller to make it send messages when the potentiometer

changes, and listen for the message to come through on a
second radio attached to your personal computer. Finally,
you’ll make two microcontrollers talk to each other using
the radios.

Figure 6-5 shows an XBee module connected to a USB-
to-serial adaptor. The USB adaptor draws power from the
USB bus, and the radio draws power from the adaptor via
its 3.3V voltage output.

Once you’ve got the XBee module’s circuit built and

MTT_Chapter6.indd Sec1:195MTT_Chapter6.indd Sec1:195 8/29/07 11:44:55 AM8/29/07 11:44:55 AM

www.it-ebooks.info

http://www.it-ebooks.info/

196 MAKING THINGS TALK

There is an alternative to the breadboard circuit shown in

Figure 6-5 for Arduino users. Libelium (www.libelium.com) and

PCB Europe (pcb-europe.com) have teamed up to make an

XBee shield for the Arduino module. The shield comes with

an XBee radio, and connects to the Arduino’s TX and RX

pins. To connect the radio to the Arduino, set the XBEE/USB

jumpers to the left, as shown in Figure 6-7. When you’re

programming the Arduino, you might want to remove the

jumpers, so that the radio’s serial communications don’t

interfere with the program upload.

You can also use your Arduino board as a USB-to-serial

converter to configure the XBee radio on the shield. To

do this, unplug your Arduino from its power source, then

remove the microcontroller chip, as shown in Figure 6-8.

Be careful not to bend the pins, so that you can put it back

when you are done. Pay attention to the orientation of the

microcontroller as well, as you have to put it back the same

way. Once you’ve removed the chip, set the shield’s XBEE/

USB jumpers to the right, as shown in Figure 6-9, and put

the shield on the board. Open a serial terminal connection

to the Arduino board’s serial port, and send commands as

shown in “Step 1: Configuring the XBee Modules Serially.”

Once you’ve configured the radio, unplug the Arduino board,

replace the microcontroller chip, set the XBEE/USB jumpers

to the left, put the shield back on, and you’re all set to

program the Arduino to talk to the XBee radio.

These shields may change their form by the time this book

is published, but even in their initial form, they are a conve-

nient way to combine Arduinos and XBees.

Arduino XBee Shield

powered, the LED on pin 13 should stay on steadily, and
the LED on pin 15 will blink. The former is lit when the
module is active (LED on), and the latter blinks whether
the radio is associated with another radio (LED blinking)
or not (LED on steadily). Make sure that your circuit is
connected to your computer (USB port or serial port) and
open the port in your favorite serial terminal program:

+++

Don’t type the return key or any other key for at least one
second afterward. It should respond like so:

OK

This step should look familiar to you from the Bluetooth
modem you saw in Chapter 2. The XBee is using an AT-
style command set like the Bluetooth modem did, and the
+++ puts it into command mode. The one-second pause
after this string is called the guard time. If you do nothing,
the module will drop out of command mode after ten
seconds, so if you’re reading this while typing, you may
need to enter another +++ string before the next stage.

Once you get the OK response, set the XBee’s address.
The 802.15.4 protocol uses either 16-bit or 64-bit long
addresses, so there are two parts to the address, the high
word and the low word (two or more bytes in computer

memory used for a single value are sometimes referred
to as a word). For this project, you’ll use 16-bit addressing
and therefore get to choose your own address. You’ll need
only the low word of the address do to this. Type:

ATMY1234\r

To confirm that you set it, type:

ATMY\r

The module should respond:

1234

You’ll see that the responses from the XBee overwrite
each other, because the XBee sends only a carriage return
at the end of every message, not a linefeed.
X

MTT_Chapter6.indd Sec1:196MTT_Chapter6.indd Sec1:196 8/29/07 11:45:36 AM8/29/07 11:45:36 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 197

A

A. XBEE/USB jumpers set to left

A. XBEE/USB jumpers set to right

» at left, above

Figure 6-7
Arduino XBee shield. The XBEE/USB jumpers
are set to the left to connect the radio’s TX
to the Arduino’s RX, and vice versa.

» above

 Figure 6-8
Arduino module with the microcontroller
removed. In this configuration, the Arduino
can act as a USB-to-serial converter.

» at left, below

Figure 6-9
Arduino XBee shield. The XBEE/USB jumpers
are set to the right so that the XBee’s TX
connects directly to the FTDI chip’s RX, and
vice versa. There is no microcontroller chip
on the board underneath the shield.

A

MTT_Chapter6.indd Sec1:197MTT_Chapter6.indd Sec1:197 8/29/07 11:45:55 AM8/29/07 11:45:55 AM

www.it-ebooks.info

http://www.it-ebooks.info/

198 MAKING THINGS TALK

An XBee Serial Terminal
Because the GNU screen program in Mac OS X, Unix, and Linux doesn’t print newlines
when the XBees send only a return character, it can be difficult to read the results.

/*

 XBee terminal

 language: processing

 This program is a basic serial terminal program.

 It replaces newline characters from the keyboard

 with return characters. It's designed for use with

 Linux, Unix, and Mac OS X in combination with XBee radios,

 because the XBees don't send newline characters back.

 */

import processing.serial.*;

Serial myPort; // the serial port you're using

String portnum; // name of the serial port

String outString = ""; // the string being sent out the serial port

String inString = ""; // the string coming in from the serial port

int receivedLines = 0; // how many lines have been received

int bufferedLines = 10; // number of incoming lines to keep

void setup() {

 size(400, 300); // window size

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 14);

 textFont(myFont);

 // list all the serial ports:

 println(Serial.list());

 // based on the list of serial ports printed from the

 // previous command, change the 0 to your port's number:

 portnum = Serial.list()[0];

 // initialize the serial port:

 myPort = new Serial(this, portnum, 9600);

}

void draw() {

 // clear the screen:

 background(0);

 // print the name of the serial port:

 text("Serial port: " + portnum, 10, 20);

Here’s a Processing program
that substitutes newlines for return
characters when it prints the results
onscreen. GNU screen users may find
it useful in place of screen for commu-
nicating with XBee radios.

Figure 6-10 shows a screenshot of the
XBee terminal program.

8

»

Figure 6-10
The XBee terminal sketch in action.

MTT_Chapter6.indd Sec1:198MTT_Chapter6.indd Sec1:198 8/29/07 11:46:57 AM8/29/07 11:46:57 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 199

 // Print out what you get:

 text("typed: " + outString, 10, 40);

 text("received:\n" + inString, 10, 80);

}

// this method responds to key presses when the

// program window is active:

void keyPressed() {

 switch (key) {

 // In OS X, if the user types return, a linefeed is returned. But

 // to communicate with the XBee, you want a carriage return:

 case '\n':

 myPort.write(outString + "\r");

 outString = "";

 break;

 case 8: // backspace

 // delete the last character in the string:

 outString = outString.substring(0, outString.length() -1);

 break;

 case '+': // we have to send the + signs even without a return:

 myPort.write(key);

 // add the key to the end of the string:

 outString += key;

 break;

 case 65535: // if the user types the shift key, don't type anything:

 break;

 // if any other key is typed, add it to outString:

 default:

 // add the key to the end of the string:

 outString += key;

 break;

 }

}

// this method runs when bytes show up in the serial port:

void serialEvent(Serial myPort) {

 // read the next byte from the serial port:

 int inByte = myPort.read();

 // add it to inString:

 inString += char(inByte);

 if (inByte == '\r') {

 // if the byte is a carriage return, print

 // a newline and carriage return:

 inString += '\n';

 // count the number of newlines:

 receivedLines++;

 // if there are more than 10 lines, delete the first one:

 if (receivedLines > bufferedLines) {

 deleteFirstLine();

Continued from opposite page.

»

MTT_Chapter6.indd Sec1:199MTT_Chapter6.indd Sec1:199 8/29/07 11:47:16 AM8/29/07 11:47:16 AM

www.it-ebooks.info

http://www.it-ebooks.info/

200 MAKING THINGS TALK

Once you’ve configured one of your radios, quit the
Processing sketch (or disconnect your serial terminal
program) and unplug the board from your computer. Next,
remove the XBee from the circuit, insert the second one,
and configure it using the same procedure. Don’t set a
radio’s destination address to the same value of its source
address, or it will only talk to itself! You can use any 16-bit
address for your radios. Here’s a typical configuration for
two radios that will talk to each other (don’t forget to add
the ,WR to the last command):

You can combine commands on the same line by separat-
ing them with commas. For example, to get both words of
a module’s source address, type this:

ATDL, DH\r

The module will respond with both words at once.
Likewise, to set both destination words and then make
the module write them to its memory so that it saves
the address when it’s turned off, type:

ATDL5678, DH0, WR\r

The module will respond to all three commands at once:

OK OK OK

X

Continued from previous page.

 }

 }

}

// deletes the top line of inString so that it all fits on the screen:

void deleteFirstLine() {

 // find the first newline:

 int firstChar = inString.indexOf('\n');

 // delete it:

 inString= inString.substring(firstChar+1);

}

Once you have the sketch working, you're ready
to set the XBee’s destination address. Make

sure you’re in command mode (+++), then type: ATDL\r

You’ll likely get this: 0

The default destination address on these modules is 0.
The destination address is two words long, so to see
the high word, type:

ATDH\r

This pair of commands can also be used to set the
destination address, like so:

ATDL5678\r

ATDH0\r

These radios also have a group, or Personal Area Network
(PAN) ID. All radios with the same PAN ID can talk to each
other, and ignore radios with a different PAN ID. Set the
PAN ID for your radio like so:

ATID1111\r

The XBee will respond to this command, like all
commands, with:

OK

Make sure to add the parameter WR after your last
command, to write the parameters to the radio’s memory.
That way they’ll remain the way you want them even after
the radio is powered off. For example:

ATID1111,WR\r

ATMY ATDL ATDH ATID

Radio 1 1234 5678 0 1111

Radio 2 5678 1234 0 1111

MTT_Chapter6.indd Sec1:200MTT_Chapter6.indd Sec1:200 8/29/07 11:47:39 AM8/29/07 11:47:39 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 201

Okay! Now you’re ready to get two modules to
talk to each other. If you happen to have two
serial ports, or two USB adaptors, you could
duplicate the circuit shown previously and wire
the second radio to the second serial port, then
open a second serial terminal window to the
second port and communicate between the two
radios that way. But it’s clearer to see what’s
going on if one of the radios is attached to
another device, like a microcontroller. Figure 6-11
shows a diagram of what’s connected to what in
this step.

Figure 6-12 shows an XBee module attached to
a regular Arduino using the XBee shield. Figure
6-13 shows an XBee attached to an Arduino mini
along with the circuit diagram. Note the 3.3V
regulator. The XBee’s serial I/O connections are
5V tolerant, meaning that they can accept 5V
data signals, even though the module operates at
3.3V, just like the XPort in Chapter 5. You need to
power the module from 3.3 volts, however.

Once your module is connected, it's time to
program the microcontroller to configure the
XBee, then to send data through it. In this
program, the microcontroller will configure the
XBee’s destination address on startup.
Once that’s done, it will watch for a switch to
change from low to high, and send data across
when the switch changes.

» at right, above

Figure 6-11
XBee #1 is connected to the microcontroller. XBee #2
is connected via USB or serial to the PC. This enables a
wireless link between the PC and the microcontroller.

!Step 2: Programming
a Microcontroller to use
the XBee Module

» at right, below

Figure 6-12
Arduino and XBee shield with potentiometer attached to
analog pin 0, and LED attached to digital pin 9. This circuit
is the same as the one shown in Figure 6-13, but without
the TX and RX LEDs on digital pins 2 and 3.

XBee module #2XBee module #1

Microcontroller
USB adaptor
or serial port

Personal
computer

RF connection

Serial TX/RX Serial TX/RX

USB TX/RX

MTT_Chapter6.indd Sec1:201MTT_Chapter6.indd Sec1:201 8/31/07 11:08:10 AM8/31/07 11:08:10 AM

www.it-ebooks.info

http://www.it-ebooks.info/

202 MAKING THINGS TALK

Figure 6-13
Top: XBee connected to an Arduino
Mini. This Mini is using a SparkFun
version of the USB-to-serial adaptor
rather than the Arduino model.
The two adaptors are functionally
identical. Bottom: Circuit diagram for
Arduino-Xbee connection.

MTT_Chapter6.indd Sec1:202MTT_Chapter6.indd Sec1:202 8/29/07 11:48:31 AM8/29/07 11:48:31 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 203

#define sensorPin 0 // input sensor

#define txLed 2 // LED to indicate outgoing data

#define rxLed 3 // LED to indicate incoming data

#define analogLed 9 // LED that changes brightness with incoming value

#define threshold 10 // how much change you need to see on

 // the sensor before sending

int lastSensorReading = 0; // previous state of the switch

int inByte= -1; // incoming byte from serial RX

char inString[6]; // string for incoming serial data

int stringPos = 0; // string index counter

First, give the I/O pins
names and set up

some variables for tracking the change
in the switch:

void setup() {

 // configure serial communications:

 Serial.begin(9600);

 // configure output pins:

 pinMode(txLed, OUTPUT);

 pinMode(rxLed, OUTPUT);

 pinMode (analogLed, OUTPUT);

 // set XBee's destination address:

 setDestination();

 // blink the TX LED indicating that the main program's about to start:

 blink(3);

}

Next, in the setup() method,
configure serial transmission, set the
modes on the I/O pins, and configure
the XBee’s destination address:

8

void setDestination() {

 // put the radio in command mode:

 Serial.print("+++");

 // wait for the radio to respond with "OK\r"

 char thisByte = 0;

 while (thisByte != '\r') {

 if (Serial.available() > 0) {

 thisByte = Serial.read();

 }

 }

 // set the destination address with 16-bit addressing. This radio's

 // destination should be the other radio's MY address and vice versa:

 Serial.print("ATDH0, DL1234\r");

 Serial.print("ATMY5678\r"); // set my address (16-bit addressing)

 // set the PAN ID. If you're in a place where many people

 // are using XBees, choose a unique PAN ID

 Serial.print("ATID1111\r");

 Serial.print("ATCN\r"); // go into data mode:

}

The XBee configuration, handled
by the setDestination() method, looks
just like what you did earlier, only now
you’re instructing the microcontroller
to do it:

8

Change the destination address to the

destination address of the radio you’re

attaching to your personal computer, not the

one that’s attached to your microcontroller.

8

 Make It

MTT_Chapter6.indd Sec1:203MTT_Chapter6.indd Sec1:203 8/29/07 11:49:02 AM8/29/07 11:49:02 AM

www.it-ebooks.info

http://www.it-ebooks.info/

204 MAKING THINGS TALK

// Blink the tx LED:

void blink(int howManyTimes) {

 for (int i=0; i< howManyTimes; i++) {

 digitalWrite(txLed, HIGH);

 delay(200);

 digitalWrite(txLed, LOW);

 delay(200);

 }

}

The blink() method is just like ones
you’ve seen previously in the book. It
blinks an LED to indicate that setup is
over:

8

void loop() {

 // listen for incoming serial data:

 if (Serial.available() > 0) {

 // turn on the RX LED whenever you're reading data:

 digitalWrite(rxLed, HIGH);

 handleSerial();

 }

 else {

 // turn off the receive LED when there's no incoming data:

 digitalWrite(rxLed, LOW);

 }

 // listen to the potentiometer:

 char sensorValue = readSensor();

 // if there's something to send, send it:

 if (sensorValue > 0) {

 //light the tx LED to say you're sending:

 digitalWrite(txLed, HIGH);

 Serial.print(sensorValue, DEC);

 Serial.print("\r");

 // turn off the tx LED:

 digitalWrite(txLed, LOW);

 }

}

The main loop handles incoming
serial data, reads the potentiometer,
and sends data out if there’s a suf-
ficient change in the potentiometer’s
reading:

8

void handleSerial() {

 inByte = Serial.read();

 // save only ASCII numeric characters (ASCII 0 - 9):

 if ((inByte >= '0') && (inByte <= '9')){

 inString[stringPos] = inByte;

 stringPos++;

 }

 // if you get an ASCII carriage return:

 if (inByte == '\r') {

 // convert the string to a number:

 int brightness = atoi(inString);

There are two other methods
called from the loop, handleSerial(),
which listens for strings of ASCII
numerals and converts them to bytes
in order to set the brightness of the led
on the PWM output, and readSensor(),
which reads the potentiometer and
checks to see whether the change on
it is high enough to send the new value
out via radio. Here are those methods:

8

»

MTT_Chapter6.indd Sec1:204MTT_Chapter6.indd Sec1:204 8/29/07 12:25:16 PM8/29/07 12:25:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 205

Continued from opposite page.

 // set the analog output LED:

 analogWrite(analogLed, brightness);

 // put zeroes in the array

 for (int c = 0; c < stringPos; c++) {

 inString[c] = 0;

 }

 // reset the string pointer:

 stringPos = 0;

 }

}

char readSensor() {

 char message = 0;

 // read the sensor:

 int sensorReading = analogRead(sensorPin);

 // look for a change from the last reading

 // that's greater than the threshold:

 if (abs(sensorReading - lastSensorReading) > threshold) {

 message = sensorReading/4;

 lastSensorReading = sensorReading;

 }

 return message;

}

Notice that in the main loop, you’re not using
any AT commands. That’s because the XBee

goes back into data mode (called idle mode in the XBee
user’s guide) automatically when you issue the ATCN
command in the setDestination() method.

Remember, in data mode, any bytes sent to an AT-style
modem go through as is. The only exception to this rule
is that if the string +++ is received, the modem switches
to command mode. This behavior is the same as that of
the Bluetooth module from Chapter 2, and as almost any
device that implements an AT-style protocol. It’s great,
because it means that once you’re in data mode, you can
send data with no extra commands, letting the radio itself
handle all the error corrections for you.

Once you’ve programmed the microcontroller, set the des-
tination address on the computer’s XBee to the address
of the microcontroller’s radio. (If you did this in the earlier
step, you shouldn’t need to do it again.) Then turn the

potentiometer on the microcontroller. You should get a
message like this in your serial terminal window:

120

The actual number will change as you turn the potentiom-
eter. It will overwrite itself in the serial window, because
you’re not sending a newline character (unless you are
using the serial terminal Processing sketch shown earlier).
Congratulations! You’ve made your first wireless transceiv-
er link. Keep turning the potentiometer until you’re bored,
then move on to step 3.
X

NOTE: You might need to disconnect the

XBee’s receive and transmit connections to

the microcontroller while programming, if

your microcontroller is programmed serially

like the Arduino and Wiring modules are.

The serial communications with the XBee

can interfere with the serial communica-

tions with the programming computer.

Once the microcontroller’s programmed,

you can re-connect the transmit and

receive lines.

MTT_Chapter6.indd Sec1:205MTT_Chapter6.indd Sec1:205 8/29/07 12:25:36 PM8/29/07 12:25:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

206 MAKING THINGS TALK

Now that you're able to communicate wirelessly, you might want to make your microcontroller mobile as well. To do this, all

you have to do is to power it from a 9-volt battery. If you’re using an Arduino module or a Wiring module, you can do this by

connecting a 9-volt battery to the power input terminals as shown in Figure 6-14 (and in the schematic shown earlier). If you’re

working with a different microcontroller and it’s powered by a 5-volt voltage regulator, just connect the battery to the input

terminals of the voltage regulator. It’s a good idea to keep your microcontroller module connected to a power adaptor or USB

power while programming and debugging, however. When a battery starts to weaken, your module will operate inconsistently,

and that can make debugging impossible.

Wireless and Mobile

Figure 6-14

Left: Arduino module powered by a 9V battery. Right: Wiring module powered by 9V battery.

!Step 3: Two-Way Wireless Communication Between Microcontrollers

This step is simple. All you have to do is to replace the
computer in the previous step with a second microcon-
troller (connect it to your second XBee module as shown
in Figure 6-12 or Figure 6-13). The program for both
microcontrollers will be almost identical to each other;
only the destination address of the XBee radio will be
different. This program will both send and receive data
over the modules. Turning the potentiometer causes it
to send a number to the other microcontroller. When the
microcontroller receives a number in the serial port,
it uses it to set the brightness of an LED on pin 9.

First, connect the second XBee module to the second
microcontroller using the circuit in Figure 6-13. It’s same

circuit you created in the previous step. Then program
both microcontrollers with the previous program, making
sure to set the destination addresses as noted in the
program. Look in Appendix C for the program in its
entirety.

When you’ve programmed both modules, power them
both on and turn the potentiometer several times. As
you turn the potentiometer, the LED on pin 9 of the other
module should fade up and down. Now you’ve got the
capability for duplex wireless communication between two
microcontrollers. This opens up all kinds of possibilities
for interaction.
X

MTT_Chapter6.indd Sec1:206MTT_Chapter6.indd Sec1:206 8/29/07 12:25:57 PM8/29/07 12:25:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 207

MATERIALS

2 solderless breadboards such as Digi-Key
part number 438-1045-ND, or Jameco part
number 20601
1 USB-to-TTL serial adaptor SparkFun’s
BOB-00718 from Chapter 2 will do the job. If you
use a USB-to-RS-232 adaptor such as a Keyspan
or Iogear dongle, refer to Chapter 2 for the
schematics to convert RS-232 to 5V TTL serial.
2 Arduino modules or other microcontrollers
2 BlueSMiRF Bluetooth modem modules
from SparkFun
2 potentiometers
6 LEDs

»

»

»
»

»
»

In Chapter 2, you learned how to connect
a microcontroller to your personal
computer using a Bluetooth radio. This
example shows you how to connect two
microcontrollers using Bluetooth in a
similar manner.

As mentioned in Chapter 2, Bluetooth was originally
intended as a protocol for replacing the wire between
two devices. As a result, it requires a tighter connection
between devices than you saw in the preceding XBee
project. In that project, a radio sent a signal out with no
awareness of whether the receiver got the message, and
could send to a different receiver just by changing the
destination address. In contrast, Bluetooth radios must
establish a connection with each other before sending
data over a given channel, and must break that connec-
tion before starting a conversation with a different radio
over that channel. The advantage of Bluetooth is that it’s
built into many commercial devices today, so it’s a conve-
nient way to connect microcontroller projects to personal
computers, phones, and more. For all its complications, it
offers reliable data transmission.

The modules used here, the BlueSMiRF radios from
Sparkfun, use a radio from BlueRadios. The AT command
set used here was defined by BlueRadios. Other Bluetooth
modules from other manufacturers also use AT-style
command sets, and they may execute similar functions,
but their syntax is not the same. Unfortunately, Bluetooth
radio manufacturers haven’t set a standard AT syntax for
their devices.

Bluetooth Transceivers

!Step 1: Getting to Know
the Commands
Because the Bluetooth connection process involves many
steps, it’s easiest to learn and understand it using a serial
terminal program. Figure 6-15 shows the wiring to connect
a BlueSMiRF radio to an FTDI USB-to-serial connector.
If you’re not using the FTDI connector, you can use the
MAX3323 circuit from Chapter 2 (Figure 2-3). Build this
circuit, then connect it to your computer and open a serial
connection to it at 9600 bits per second using your serial
terminal program.

Figure 6-16 shows the connection you’re about to make.
First, you’ll open a serial terminal window to connect
to the radio’s serial interface, then you’ll open a second
serial terminal window to connect via your computer’s
Bluetooth radio to the BlueSMiRF’s radio. Your computer’s
Bluetooth radio will show up as a second serial port on
your computer, as it did after you established a pairing
with it in Chapter 2 in Project #2, Wireless Monski Pong. If
you didn’t make that pairing, this would be a good time to
go back and do it.

The BlueSMiRF radios use an AT-style command set
for command and configuration, and have two modes
— command mode and data mode — just like the XBee
radios. When you first power up a BlueSMiRF and connect
to its serial interface, it’s in command mode. To see that
it’s alive, type: AT\r. It will respond:

\r\nOK\r\n

All of the radio’s responses will be preceded and followed
by a linefeed and carriage return as shown here. All of your
input commands should be followed by a carriage return
(press Enter or Return).

In order for one radio to connect to another, the second
radio must be discoverable. In the BlueRadios syntax, a
radio is discoverable when it’s in Slave mode. The radio
connecting to it is said to be in Master mode. In this step,

Project 11

MTT_Chapter6.indd Sec1:207MTT_Chapter6.indd Sec1:207 8/29/07 12:26:52 PM8/29/07 12:26:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

208 MAKING THINGS TALK

Figure 6-15
BlueSMiRF radio
attached to a USB-to-
serial adaptor.

MTT_Chapter6.indd Sec1:208MTT_Chapter6.indd Sec1:208 8/29/07 12:30:10 PM8/29/07 12:30:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 209

Figure 6-16
Bluetooth-to-serial connection
through two serial terminal windows.

you’ll learn a radio’s Bluetooth address and check its
connection status.

A series of status commands tell you about the radio’s
configuration. To learn the radio’s Bluetooth address, type:

 ATSI,1\r

It will respond with an address in hexadecimal notation,
like this:

OK

1122334455AA

Write down this address, or copy it to a text document.
You’ll need it in a moment. Next, check its connection
status by typing ATSI,3\r. It will respond like so:

OK

0,0

The first digit is telling you that the radio is in slave mode,

and the second, that it’s not connected. Now you can open
a second serial terminal window, open the serial port that
corresponds to the radio’s Bluetooth connection (you
established this number when you paired the radio with
your computer in the Wireless Monski Pong project), and
you’ll be speaking via your computer’s Bluetooth radio
to the BlueSMiRF’s radio. You’ll get a message like this
back in the serial terminal:

CONNECT, 1122334455AA

Following that, anything you type in the Bluetooth
connection window shows up in the serial connection
window, and vice versa. When you close the Bluetooth
serial window, you’ll get the following message in the
serial window:

DISCONNECT

There are other status commands as well, but these
ones are the ones that are most important to you at first.
X

Computer's
Bluetooth Radio

BlueSMiRF's
Bluetooth Radio

BlueSMiRF's
serial port

BlueSMiRF

Bluetooth RF

USB-to-serial
connector

Computer's
USB port

Serial

USB

3. Serial user typed "hi there"

1. Bluetooth user opened
terminal window

2. Bluetooth user typed "hello"

4. Bluetooth user closed
terminal window

MTT_Chapter6.indd Sec1:209MTT_Chapter6.indd Sec1:209 8/29/07 12:30:40 PM8/29/07 12:30:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

210 MAKING THINGS TALK

Now that you’ve got basics of connecting and disconnecting,
it’s time to connect to a microcontroller using Bluetooth.
For this step, you’ll connect via the same USB-to-serial
connection, but instead of speaking to your computer’s own
radio, you’ll connect to a radio attached to a microcontroller.

First, get the Bluetooth addresses for both of your radios.
You already wrote down one. Replace it with the second
radio in your serial-to-USB circuit and follow the same
steps to get that radio’s address as well.

Next, build the microcontroller circuit shown in Figure
6-17. Just like the XBee example, it’s got a potentiometer
attached to the analog pin so that you can send its values.
There’s also a connection to the BlueSMiRF’s Clear-to-
Send (CTS) pin. When the BlueSMiRF reads 5V on this pin,
it stops sending data until the pin goes low again. You’ll use
it to stop the BlueSMiRF sending serial data to the micro-
controller when you don’t want it to.

NOTE: You’ll probably have to remove your BlueSMiRF while

programming the Arduino or Wiring boards, just as you’ve

had to for all other serial devices.

The program that follows connects to another BlueSMiRF
with a set address, and when it connects, it sends its
potentiometer value as an ASCII string, terminated by
an asterisk, like this: 123*

Because there are so many newline characters and
carriage returns in the AT command responses, it’s
simplest just to use a terminator that isn’t used in the
command set. That’s why you’re using an asterisk in this
case.

Just like the XBee example, this program also looks for
incoming ASCII strings (terminated by an asterisk this
time) and converts them to use as a PWM value to dim an
LED on pin 9.

/*

 BlueRadios master connection

 Language: Wiring/Arduino

*/

#define sensorPin 0 // input sensor

#define txLed 2 // LED to indicate outgoing data

#define rxLed 3 // LED to indicate incoming data

#define CTSpin 4 // clear-to-send pin

#define analogLed 9 // LED that will change brightness with

 // incoming value

#define threshold 10 // how much change you need to see on the

 // sensor before sending

byte lastSensorReading = 0; // previous state of the pot

long lastConnectTry; // milliseconds elapsed since the last

 // connection attempt

long connectTimeout = 5000; // milliseconds to wait between

 // connection attempts

int inByte= -1; // incoming byte from serial RX

char inString[6]; // string for incoming serial data

int stringPos = 0; // string index counter

// address of the remote BT radio --

// replace with the address of your remote radio:

char remoteAddress[13] = "112233445566";

byte connected = false; // whether you're connected

First, the constants and variables
for this program are as follows:

8

!Step 2: Connecting Two Bluetooth Radios

MTT_Chapter6.indd Sec1:210MTT_Chapter6.indd Sec1:210 8/29/07 12:31:06 PM8/29/07 12:31:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 211

Figure 6-17
BlueSMiRF radio attached to a
microcontroller. This circuit is almost
identical to the XBee microcontroller
circuit discussed earlier; only the
radio is different.

MTT_Chapter6.indd Sec1:211MTT_Chapter6.indd Sec1:211 8/29/07 12:31:25 PM8/29/07 12:31:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

212 MAKING THINGS TALK

void setup() {

 // configure serial communications:

 Serial.begin(9600);

 // configure output pins:

 pinMode(txLed, OUTPUT);

 pinMode(rxLed, OUTPUT);

 pinMode (analogLed, OUTPUT);

 pinMode(CTSpin, OUTPUT);

 // set CTS low so BlueSMiRF can send you serial data:

 digitalWrite(CTSpin, LOW);

 // attempt a connection:

 BTConnect();

 // blink the tx LED to say that you're done with setup:

 blink(3);

}

The setup() method just sets the
states of the pins, initializes serial,
and blinks an LED, as usual. The
clear-to-send pin is taken low here so
that the BlueSMiRF can start sending
serial data to the microcontroller.
Then an initial attempt to connect the
radios is made, using a method called
BTConnect():

8

void BTConnect() {

 Serial.print("+++\r");

 delay(250);

 Serial.print("ATDH\r");

 Serial.print("ATDM");

 Serial.print(remoteAddress);

 Serial.print(",1101\r");

}

Here’s the BTConnect() method. It
sends +++ followed by ATDH to break
any existing connection, then sends
the ATDM command, which requests a
connection to the other radio.

8

int readSensor() {

 int message = 0;

 // read the sensor:

 int sensorReading = analogRead(sensorPin);

 // look for a change from the last reading

 // that's greater than the threshold:

 if (abs(sensorReading - lastSensorReading) > threshold) {

 message = sensorReading/4;

 lastSensorReading = sensorReading;

 }

 return message;

}

The readSensor() method checks
the value of the potentiometer:

8

MTT_Chapter6.indd Sec1:212MTT_Chapter6.indd Sec1:212 8/29/07 12:31:53 PM8/29/07 12:31:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 213

void blink(int howManyTimes) {

 for (int i=0; i< howManyTimes; i++) {

 digitalWrite(txLed, HIGH);

 delay(200);

 digitalWrite(txLed, LOW);

 delay(200);

 }

}

The blink() method is the same as
it was in the earlier XBee example:

8

void loop() {

 if (Serial.available() > 0) {

 // signal that there's incoming data using the rx LED:

 digitalWrite(rxLed, HIGH);

 // do something with the incoming byte:

 handleSerial();

 // turn the rx LED off.

 digitalWrite(rxLed, LOW);

 }

 // if you're not connected and 5 seconds have passed in that state,

 // make an attempt to connect to the other radio:

 if (!connected && millis() - lastConnectTry > connectTimeout) {

 BTConnect();

 lastConnectTry = millis();

 }

}

The main loop listens for incoming
serial data and handles it. If more than
five seconds have passed and the
radio’s still not connected to the other
radio, the microcontroller attempts to
connect again:

8

The handleSerial() method is similar to the
one in the XBee project, but there are some

important differences. First, because there’s a dedicated
connection between the two radios, you need to keep track
of the connection status. When a new connection is made,
the BlueSMiRF will send a serial message like this before
dropping into data mode:

CONNECT,0016CB202BF3

When the connection’s broken, it will send this message,
and stay in command mode:

DISCONNECT

In addition, when it’s searching, there are a couple of other
messages it might send:

NO CARRIER

NO ANSWER

Now that you know all the messages that you might get,
you can establish what messages to look for. If you want
to be thorough, you’d need to wait for the whole message
each time and confirm that it’s the right message. Parsing
strings in most microcontroller languages is tricky,
because of their limited memory, so it’s simpler to look
for unique characters in the various strings, because then
you have to check for just one byte each time. It’s not as
thorough, but in this case, it works very consistently.

The only time a comma shows up is in the CONNECT
message, so you can use that as a sign of connection.
The only time a S shows up is in the DISCONNECT
message, so you can use that as a sign of disconnection.
You might be tempted to use D, but remember that D is a
hexadecimal digit, so it might show up in the CONNECT
message. Likewise C, which also shows up in three of
the four messages. Finally, R shows up only in the other
two messages, and they both only show up when you’re
disconnected, so you can use them in case your microcon-
troller misses a DISCONNECT message.

MTT_Chapter6.indd Sec1:213MTT_Chapter6.indd Sec1:213 8/29/07 12:32:13 PM8/29/07 12:32:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

214 MAKING THINGS TALK

void handleSerial() {

 inByte = Serial.read();

 delay(2);

 // comma comes only in the CONNECT,<address> message:

 if (inByte == ',') {

 // send an initial message:

 sendData();

 // update the connection status:

 connected = true;

 }

 //S comes only in the DISCONNECT message:

 if (inByte == 'S') {

 // turn off the analog LED:

 analogWrite(analogLed, 0);

 connected = false;

 }

 //R comes only in the NO CARRIER and NO ANSWER messages:

 if (inByte == 'R') {

 // turn off the analog LED:

 analogWrite(analogLed, 0);

 connected = false;

 }

 if (connected) {

 // save only ASCII numeric characters (ASCII 0 - 9):

 if ((inByte >= '0') && (inByte <= '9')){

 inString[stringPos] = inByte;

 stringPos++;

 }

 // if you get an asterisk, it's the end of a string:

 if (inByte == '*') {

 // convert the string to a number:

 int brightness = atoi(inString);

 // set the analog output LED:

 analogWrite(analogLed, brightness);

 // put zeroes in the array

 for (int c = 0; c < stringPos; c++) {

 inString[c] = 0;

 }

 // reset the string pointer:

 stringPos = 0;

 // as this byte (*) is the end of an incoming string,

 // send out your reading in response:

 sendData();

 }

 }

}

The sequence for this handleSerial()
method is a bit complicated, so Figure
6-18 shows it in a flowchart. The actual
code follows:

8

MTT_Chapter6.indd Sec1:214MTT_Chapter6.indd Sec1:214 8/29/07 12:32:37 PM8/29/07 12:32:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 215

Figure 6-18
Flowchart of the

handleSerial() method.

void sendData() {

 // indicate that we're sending using the tx LED:

 digitalWrite(txLed, HIGH);

 Serial.print(readSensor(), DEC);

 // string termination:

 Serial.print("*");

 // turn off the tx LED:

 digitalWrite(txLed, LOW);

}

handleSerial() calls the sendData()
method to read the sensor and send it
out. Here it is:

8

That’s the whole program. Run this on your
microcontroller, filling in the address of your

second radio for the address in the remoteAddress array
above. Then connect your second radio to your USB-to-
serial adaptor, if it’s not there already, and open a serial
terminal window to it. The microcontroller will continue to
try to connect to this radio every five seconds until a con-
nection is established, and then it will start sending sensor
values through. Your initial messages should look like this
in the serial terminal:

CONNECT,00A096152B36

105*

You can respond as if you were sending your own sensor
values, and the microcontroller will fade the LED on pin 9
accordingly. Try this:

12*

120*

255*

1*

The LED should start dim, get brighter, then brightest,
then get very dim. You should get four sensor readings
in response.

connected

sendSensor()

R, S

R, S

0-9

disconnected

Convert string to
brightness

read incoming
bytes

read incoming
bytes

add character
to inString

MTT_Chapter6.indd Sec1:215MTT_Chapter6.indd Sec1:215 8/29/07 12:33:04 PM8/29/07 12:33:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

216 MAKING THINGS TALK

If you’ve been following the parallels between the XBee
example and this one, you probably know what’s coming.
Build the same circuit for your second microcontroller,
using the second radio. Then change the Bluetooth
address in the earlier program to be the address of the
first radio, and program the second microcontroller. Then
reset both microcontrollers. They will both attempt to
connect to the other, and when either connects, they’ll
begin exchanging data. If you have trouble getting them to

connect, change the connectTimeout variable so that they
don’t have the same value. This program won’t work with
every Bluetooth connection you have to make. When
connecting to personal computers or mobile phones,
you have to take different approaches, depending on the
specific messages that those devices use. But the basic
sequence should be similar enough to this that it will
serve as a useful starting place.
X

!Step 3: Connecting Two Microcontrollers Via Bluetooth

Figure 6-19
Interfacing a group of wireless devices to
the Internet through a single connection.

Serial

microcontroller

Serial

microcontroller
Serial

microcontroller

Serial

Ethernet

Ethernet

XBee
ZigBee-to-serial

module

XBee
ZigBee-to-serial

module

XBee
ZigBee-to-serial

module

XBee
ZigBee-to-serial

module

Lantronix serial-to-ethernet
module (XPort or Micro)

Internet
CGI interface
to Web server

ZigBee RF

ZigBee RFZigBee RF

MTT_Chapter6.indd Sec1:216MTT_Chapter6.indd Sec1:216 8/29/07 12:33:25 PM8/29/07 12:33:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 217

In Project #5, you connected a microcontroller to the
internet using a Lantronix Micro serial-to-Ethernet module.
You could replace the Micro with a WiMicro and build the
exact project, with only some minor configuration changes
on the WiMicro.

It’s worth mentioning why Wi-Fi isn’t more pervasive in
embedded wireless projects. First, there’s the cost. Most
of the serial-to-Wi-Fi modules on the market are more
expensive than equivalent transceivers implementing
other protocols. For example, the WiMicro costs about
$165. DigiConnect’s equivalent module, the plaintively
named Wi-ME, costs about $130. Other wireless Ethernet-
to-serial modules on the market are in the same price
range — over $100. When compared to $20 for XBee and
other serial transceivers, or even the $60 price range
typical for many Bluetooth modules, Wi-Fi isn’t exactly
a bargain.

Besides the cost, however, there’s another factor to
consider before going Wi-Fi. Most Wi-Fi modules consume
more electrical power than the other radio types
mentioned here. Because one of the main reasons for
going wireless is to go mobile, you’ll be eating up battery
life with Wi-Fi radios. So they’re great when they’re conve-
niently already built into a product, but if you’re building
from the ground up, it’s worth considering other alterna-
tives. One common solution for wireless projects that
need Internet access is to make an RF-to-Ethernet bridge.
For example, one of the XBee radios from the earlier
project could be interfaced to a Lantronix XPort or Micro
module to act as the Internet connection for a whole
collection of XBee-enabled objects. Figure 6-19 shows
a typical network setup for such a system.
X

What About Wi-Fi?
So far, you’ve seen the most basic serial radios in action in the transmitter-receiver
project, and more advanced radios in the transceiver projects. If you’re thinking about
networks of microcontrollers, you’re probably wondering whether you can connect
your projects to the Internet and to each other using Wi-Fi. The answer is: yes, you can.

The wisest thing you can do when buying your radios
is to buy them as a set. Matching a transmitter from
one company to a receiver from another is asking for
headaches. They may say that they operate in the same
frequency range, but there’s no guarantee. Likewise,
trying to hack an analog radio, such as that from a baby
monitor or a walkie-talkie, may seem like a cheap and

easy solution, but in the end, it’ll cost you time and eat
your soul. When looking for radios, look for something that
can take the serial output of your microcontroller. Most
microcontrollers send serial data at TTL levels, with 0V for
logic 0 and 3.3V or 5V for logic 1. Converting the output to
RS-232 levels is also fairly simple, so radios that can take
those signals are good for your purposes.

Buying Radios
You’ve seen a few different kinds of wireless modules in this chapter. Though they
do the job well, they’re not the only options on the market. You should definitely shop
around for modules that suit your needs. Following are a few things to consider in
choosing your radios.

MTT_Chapter6.indd Sec1:217MTT_Chapter6.indd Sec1:217 8/29/07 12:33:44 PM8/29/07 12:33:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

218 MAKING THINGS TALK

If you opt for the least expensive solutions, you can just
implement a one-way wireless link with transmitter-
receiver pairs and send the message again and again,
hoping that it’s eventually received. If you spend a little
more money, you can implement a duplex connection,
so that each side can query and acknowledge the other.
Regardless of which method you choose, you have to
prepare for the inevitable noise that comes with a wireless
connection. If you’re using infrared, incandescent light and
heat act as noise, and if you’re using radio, all kinds of elec-
tromagnetic sources act as noise, from microwave ovens
to generators to cordless phones. You can write your own
error-checking routines, but increasingly, wireless protocols

like Bluetooth and ZigBee are making it possible for you
to forget about that, because the modules that implement
these protocols include their own error correction.

Just as you started learning about networks by starting
with the simplest one-to-one network in Chapter 2, you
started with wireless connections by looking at simple
pairs in this chapter. In the next chapter, you’ll look at
peer-to-peer networks, in which there is no central control-
ler, and each object on the network can talk to any other
object. You’ll see both Ethernet and wireless examples.
X

Conclusion
Wireless communication involves some significant differences from wired communication.
Because of the complications, you can’t count on the message getting through like you
can with a wired connection, so you have to decide what you want to do about it.

Consider the data rate you need for your application
— and, more specifically, for the wireless part of it. You
may not need high-speed wireless. One common use for
wireless communication in the performance world is to
get data off the bodies of performers without a wired con-
nection, in order to control MIDI performance devices like
samplers and lighting dimmers. You might think that you
need your radios to work at MIDI data rates to do this, but
you don’t. You can send the sensor data from the perform-
ers wirelessly at a low data rate to a stationary microcon-
troller, then have the microcontroller send the data on via
MIDI at a higher data rate.

Most of the inexpensive radio transmitters mentioned
previously send data at relatively low rates (under 9600
bps). Given the noisy nature of RF, it’s wise to not attempt
to send at the top speed if you don’t need to. In the trans-
mitter-receiver project, the radio pair can operate at up to
4800 bps, but you are sending at only 2400 bps. Try it at

4800 bps, and you’ll notice more errors. The 2.4Ghz radios
used for Bluetooth, ZigBee, and wireless Ethernet are
exceptions to this rule. They generally operate reasonably
at much higher data rates, because they’ve got a micro-
controller on board to manage the data flow.

Consider the protocols of the devices that you already have
at your disposal. For example, if you’re building an object to
speak to a mobile phone or a laptop computer, and there’s
only one object involved, consider Bluetooth. Most laptops
and many mobile phones already have Bluetooth radios
onboard, so you’ll need only one radio to do the job. It may
take some work to make your object compatible with the
commands specific to the existing devices you’re working
with, but if you can concentrate on that instead of on
getting the RF transmission consistent, you’ll save yourself
a lot of time.
X

Urban Sonar by Kate Hartman, Kati London, and Sai Sriskandarajah.
The jacket contains four ultrasonic sensors and two pulse sensors. a microcontroller in the jacket communicates via Bluetooth to your mobile
phone. The personal space bubble as measured by the sensors and your changing heart rate as a result of your changing personal space paint
a portrait of you that is sent over the phone to a visualizer on the internet.

MTT_Chapter6.indd Sec1:218MTT_Chapter6.indd Sec1:218 8/31/07 11:09:06 AM8/31/07 11:09:06 AM

www.it-ebooks.info

http://www.it-ebooks.info/

WIRELESS COMMUNICATION 219

MTT_Chapter6.indd Sec1:219MTT_Chapter6.indd Sec1:219 8/29/07 12:37:46 PM8/29/07 12:37:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

220 MAKING THINGS TALK

MTT_Chapter7.indd Sec1:220MTT_Chapter7.indd Sec1:220 8/29/07 1:58:06 PM8/29/07 1:58:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sessionless Networks
So far, the network connections you’ve seen in this book have mostly

been dedicated connections between two objects. Serial communica-

tions involve the control of a serial port. Mail, web, and telnet connections

involve a network port. In all of these cases, there’s a device that makes

the port available (generally a server), and a client that requests access

to the port (a client). The networked pong application in Chapter 5 was

a classic example of this. In that application, the server handled all the

communications between the other devices. In this chapter, you’ll learn

how to make multiple devices on a network talk to each other directly,

or talk to all the other devices at once.

7
MAKE: PROJECTS

Perform-o-shoes by Andrew Schneider.

The shoes exchange messages with a multimedia computer via XBee radio. When you moonwalk in the shoes, your
pace and rhythm controls the playback of music from the computer.

MTT_Chapter7.indd Sec1:221MTT_Chapter7.indd Sec1:221 8/29/07 1:52:08 PM8/29/07 1:52:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

222 MAKING THINGS TALK

Look, Ma: No Microcontroller!
Since the beginning of the book, you’ve been working with programmable micro-
controllers, writing the whole program yourself. You don’t always have to do this. The
various network devices you’ve been working with — the Lantronix devices, and XBee
and Bluetooth Radios — all have their own microcontrollers built in. Some of them have
their own digital and analog input and output pins. You can configure these devices to
activate and respond to these I/O pins with network messages, but you need to learn
their protocols first. To give you some examples of how you can use these network
modules to their full potential, none of the projects in this chapter use programmable
microcontrollers.

Sessions versus Messages
In Chapter 5, you learned about the Transmission Control
Protocol, TCP, which is used for much of the communica-
tion on the Internet. To use TCP, your device has to request
a connection to another device. The other device opens
a network port, and the connection is established. Once
the connection is made, information is exchanged, then
the connection is closed. The whole request-connect-
converse-disconnect sequence constitutes a session. If
you want to talk to multiple devices, you have to open and
maintain multiple sessions. Sessions characterize TCP
communications.

Sometimes you want to make a network in which objects
can talk to each other more freely, switching conversational
partners on the fly, or even addressing the whole group
if the occasion warrants. For this kind of communication,
there’s another protocol used on the Internet, called the
User Datagram Protocol, or UDP.

Unlike the session-based TCP, UDP communication is all
about messages. UDP messages are called datagrams.
Each datagram to be sent is given a destination address
and is sent on its merry way. Once the sender sends a
message, it forgets about it. There is no two-way socket
connection between the sender and receiver. It’s the
receiver’s responsibility to decide what to do if some of
the datagram packets don’t arrive, or if they arrive in the
wrong order.

Because UDP doesn’t rely on a dedicated one-to-one
connection between sender and receiver, it’s possible
to send a broadcast UDP message that’s sent to every

other object on a given subnet, For example, if your
address is 192.168.1.45, and you send a UDP message
to 192.168.1.255, everybody on your subnet receives
the message. Because this is such a handy thing to
do, a special address is reserved for this purpose:
255.255.255.255, which is the limited broadcast address,
goes only to addresses on the same LAN, and does not
require you to know your subnet address. This address is
useful for tasks like finding out who’s on the subnet.

The advantage of UDP is that data moves faster, because
there’s no error checking. It’s also easier to switch the end
device that you’re addressing on the fly. The disadvantage
is that it’s less reliable byte-for-byte, as dropped packets
aren’t resent. UDP is useful for streams of data where
there’s a lot of redundant information, like video or audio.
If a packet is dropped in a video or audio stream, you may
notice a blip, but you can still make sense of the image or
sound.

The relationship between TCP and UDP is similar to the
relationship between Bluetooth and 802.15.4. Bluetooth
devices have to establish a session to each other to com-
municate, whereas 802.15.4 radios like the XBee radios
in Chapter 6 communicate simply by sending addressed
messages out to the network without waiting for a result.
Like TCP, Bluetooth is reliable for byte-critical applications,
but less flexible in its pairings than 802.15.4.
X

MTT_Chapter7.indd Sec1:222MTT_Chapter7.indd Sec1:222 8/29/07 1:52:28 PM8/29/07 1:52:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 223

Who’s Out There? Broadcast Messages
The first advantage to sessionless protocols like UDP and 802.15.4 is that they allow for
broadcasting messages to everyone on the network at once. Although you don’t want
to do this all the time, because you’d flood the network with messages that not every
device needs, it’s a handy ability to have when you want to find out who else is on your
network. You simply send out a broadcast message asking “Who’s there?” and wait
for replies. You could write your own methods for doing this, but most of the time you
won’t have to. Broadcast querying is such a useful technique that most manufactur-
ers of network devices include it as part of their products’ functionality. Lantronix uses
a specific UDP message to query a subnet for any of their devices. Similarly, the XBee
devices from Maxstream have a special broadcast query command.

Querying for Lantronix Devices
Using UDP
All the Lantronix devices are preprogrammed to respond
via UDP if they receive a particular UDP message. Knowing
this, you can find out the IP address of any Lantronix
device on your subnet by sending this message. They
reserve a special port for status queries: port 30718.
When you send UDP messages to that port, you get back
a status report from the device. This is handy if you’ve got
a few Lantronix devices on the network and need to know
their addresses.

To test this, all you need is a Lantronix device that’s
powered and connected to your Ethernet or Wi-Fi network,
and a program that sends UDP datagrams. The network
query messages don’t involve any communication over

the devices’ serial ports, so it doesn’t matter what you’ve
got connected to the serial port. You can reuse the pong
client you built in Chapter 5 or the air quality meter from
Chapter 4. In fact, it would work if you just provided power
to the Lantronix device.

There’s no way to send UDP messages using the Processing
Network library, but there’s a good free UDP library
available from the Hypermedia Atelier at hypermedia.loeil
org/processing/. You can also find it linked from the Libraries
page of the main Processing site, at www.processing.org/
reference/libraries/index.html. To use it, make a new
directory called udp/ in the libraries/ subdirectory of your
Processing application directory. Then unzip the contents
of the download and drop them in the directory you
created. After that, restart Processing and you’re ready
to use the UDP library.

/*

 Lantronix UDP Device Query

 Language: Processing

 Sends out a UDP broadcast packet to query a subnet for Lantronix

 serial-to-ethernet devices.

 Lantronix devices are programmed to respond to UDP messages

 received on port 30718. If a Lantronix device receives the string

 0x00 0x00 0x00 0xF6, it responds with a UDP packet containing the

 status message on port 30718.

 When the program starts, press any key on the keyboard and watch

Here’s a Processing
sketch using that library

that sends out a search string for
Lantronix devices on a subnet, waits
for responses, and then prints them.
Run the program, make sure the applet
window has focus, and press any key to
send the UDP broadcast message.

 Try It

»

MTT_Chapter7.indd Sec1:223MTT_Chapter7.indd Sec1:223 8/29/07 1:52:47 PM8/29/07 1:52:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

224 MAKING THINGS TALK

Continued from previous page.

 the message pane for responses.

 See the Lantronix integration guide from http://www.lantronix.com

 for the details.

 This program uses the Hypermedia UDP library, available from

 http://hypermedia.loeil.org/processing/.

*/

// import UDP library

import hypermedia.net.*;

UDP udp; // define the UDP object

int queryPort = 30718; // the port number for the device query

void setup() {

 // create a new connection to listen for

 // UDP datagrams on query port;

 udp = new UDP(this, queryPort);

 // listen for incoming packets:

 udp.listen(true);

}

//process events

void draw() {

 // Twiddle your thumbs. Everything is event-generated.

}

/*

 send the query message when any key is pressed:

 */

void keyPressed() {

 byte[] queryMsg = new byte[4];

 queryMsg[0] = 0x00;

 queryMsg[1] = 0x00;

 queryMsg[2] = 0x00;

 // because 0xF6 (decimal value 246) is greater than 128

 // you have to explicitly convert it to a byte:

 queryMsg[3] = byte(0xF6);

 // send the message

 udp.send(queryMsg, "255.255.255.255", queryPort);

 println("UDP Query sent");

}

/*

The response is stored in an array
called inData[], and you can see in
the code how that array breaks down.
Byte 3, for example, is a byte that
tells us what follows. If that byte’s
value is 0xF7, then the next 16 bytes
contain the device’s basic configura-
tion, including its firmware version,
checksum and device type. Following
that, in bytes 24 to 30 of the array, is
the device’s MAC address. Because the
MAC address is usually on a sticker on
the side of the device, this is a handy
way to find out who’s who.

»

MTT_Chapter7.indd Sec1:224MTT_Chapter7.indd Sec1:224 8/29/07 1:53:09 PM8/29/07 1:53:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 225

Continued from opposite page.

 listen for responses via UDP

 */

void receive(byte[] data, String ip, int port) {

 String inString = new String(data); // incoming data converted to string

 int[] intData = int(data); // data converted to ints

 int i = 0; // counter

 // print the result:

 println("response from "+ip+" on port "+port);

 // parse the response for the appropriate data.

 // if the fourth byte is <F7>, we got a status reply:

 print("Received response: ");

 println(hex(intData[3],2));

 if (intData[3] == 0xF7) {

 // MAC address of the sender is bytes 24 to 30 (the end):

 print("MAC Addr: ");

 for (i=24; i < intData.length; i++) {

 print(" " + hex(intData[i], 2));

 }

 }

 // print two blank lines to separate messages from multiple responders:

 print("\n\n");

}

The responses you get from the query
message will look like this:

UDP Query sent

response from 192.168.1.128 on port 30718

Received response: F6

response from 192.168.1.47 on port 30718

Received response: F7

MAC Addr: 00 20 4A 8A 1E 48

response from 192.168.1.116 on port 30718

Received response: F7

MAC Addr: 00 20 4A 8F A1 6F

response from 192.168.1.236 on port 30718

Received response: F7

MAC Addr: 00 20 4A 66 A9 DD

NOTE: Notice that the first response is from

the IP address of your computer. When you

send a broadcast message, it comes back to

you as well!

Querying for XBee Radios
Using 802.15.4 Broadcast Messages
Like the Lantronix devices, the XBee radios have a
command for querying the air for any available radios.
This is referred to as node discovery. When given the AT
command ATND\r, the XBee radio sends out a broadcast
message requesting that all other radios on the same
personal area network (PAN) identify themselves. If a radio
receives this message, it responds with its source address,
serial number, received signal strength, and node identifier.

NOTE: To do node discovery, your radios must have version 10A1

of the XBee firmware or later. See the sidebar on upgrading the

firmware on XBee radios for more details.

For the purposes of this exercise, you’ll need at least two
XBee radios connected to serial ports on your computer.
The easiest way to do this is by using the USB-to-serial
converter you’ve been using all along. The circuit from
Figure 6-5 will work for this.

Once you’ve got the radios connected and working, open
a serial terminal connection to one of them and issue
the following command (you can use the XBee Terminal
Processing program from Chapter 6 to communicate
more easily with the XBee): +++ then wait for the radio to
respond with OK. Then type (remember, \r means carriage
return, so press Enter or Return instead of \r): ATND\r.

If there are other XBee radios on the same personal
area network in range, the radio will respond after a few
seconds with a string like this:

1234

13A200

400842A7

28

TIGOE1

5678

13A200

400842A9

MTT_Chapter7.indd Sec1:225MTT_Chapter7.indd Sec1:225 8/29/07 1:53:30 PM8/29/07 1:53:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

226 MAKING THINGS TALK

To use the node discover and node identifier and some of

the other XBee AT commands covered in this chapter, your

XBee radios need to be upgraded to at least version 10A1.

To check the firmware version of your radios, send the

following command: ATVR\r. The radio will respond: 10A2.

If the number is 10A1 or above (remember, it’s in hexadecimal),

you’re good to go. If not, go to www.maxstream.net/

support/downloads.php and download the X-CTU software.

Bad news, Mac OS X users: it only runs on Windows (though

you can run it under Parallels, if your Mac runs Parallels).

Before you can download software, you’ll need to add a

couple of connections between your serial port and your

radio. Specifically, connect the DTR and RTS connections

from the XBee (pins 9 and 16, respectively) to the same pins

of your serial port. Figure 7-2 shows how do to this on the

SparkFun FTDI board. Once you’ve made these connections,

you’re ready to run the software.

Once you’ve installed the software, launch it. On the PC

Settings tab, you’ll be able to select the serial port that your

XBee radio is attached to. Pick a port, and leave the settings

at their defaults. Click the Modem Configuration tab and

you’ll get to the tab where you can update the firmware.

Click the Read button to read the current firmware on your

radio. You’ll get a screenful of the settings of your radio,

similar to that in Figure 7-1. The firmware version is shown

in the upper righthand corner. You can pull down that

menu to see the latest versions available. Pick the latest

one (anything after 10A1), then check the Always Update

Firmware checkbox. Leave the Function Set menu choice set

to XBEE 802.15.4. Then click the Write button. The software

will download the new firmware to your radio, and you’re

ready to go. The X-CTU software is useful to keep around,

because it also lets you change and record your radio’s

settings without having to use the AT commands.

Upgrading the Firmware on XBee Radios

Figure 7-1. The X-CTU Modem Configuration tab.

1E

TIGOE3

Each grouping represents a different radio. The first
number is the radio’s source address (the number you get
when you send it the command string ATMY). The second
is the high word of the radio’s serial number, the third is
the low word. The fourth number is a measurement of
the radio’s received signal strength; in other words, it tells
you how strong the radio signal of the query message was
when it arrived at the receiving radio. The final line gives
the radio’s node identifier. This is a text string, up to 20
characters long, that you can enter into the radio to give

it a name you can remember. You didn’t use this function
in Chapter 6, so your radios may not have node identifier
strings. If you want to set the node identifier for further
use, type: ATNI myname, WR\r

Replace myname with the name you want.

Broadcast messages can be useful for reasons other than
for identification queries like the ones shown here, but they
should be used sparingly, because they create more traffic
than is necessary. In the next project, you’ll use broadcast
messages to reach all the other objects in a small, closed
network.

MTT_Chapter7.indd Sec1:226MTT_Chapter7.indd Sec1:226 8/29/07 1:53:49 PM8/29/07 1:53:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 227

Figure 7-2. Connecting the DTR and RTS pins on the XBee radio to the FTDI USB-to-serial adaptor, including the wiring under the radio and
the FTDI adaptor.

MTT_Chapter7.indd Sec1:227MTT_Chapter7.indd Sec1:227 8/29/07 1:54:36 PM8/29/07 1:54:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

228 MAKING THINGS TALK

If you’ve got a workshop to take care of,
you’ll appreciate this project. You’re going
to attach a volatile organic compound
(VOC) sensor to an XBee radio to sense
the concentration of organic solvents in
the air in your shop. All too often, when
you’re working in the shop by yourself,
you become insensitive to the fumes of
the chemicals you’re working with. This
project is an attempt to remedy that issue.

The sensor values are sent to two other radios: one is
attached to an XPort, which is connected to the Internet.
From there, a PHP script reads the data and stores it in a
web document. The other radio is attached to a cymbal-
playing toy monkey elsewhere in the house that makes
an unholy racket when the organic solvent levels in the
shop get high. That way, the rest of the family will know
immediately if your shop is toxic. If you don’t share my
love of monkeys, anything that can be switched on from
a transistor can be controlled by this circuit. Figure 7-4
shows the network for this project. And Figure 7-3 shows
the completed elements of the project.

Reporting Toxic Chemicals in the Shop

WARNING: This project is designed for demonstration

purposes only. The sensor circuit hasn’t been calibrated. It

won’t save your life; it’ll just make you a bit more aware of

the solvents in your environment. Don’t rely on this circuit

if you need an accurate measurement of the concentration

of organic compounds. Check with Figaro Sensor (www.

figarosensor.com) to learn how to build a properly calibrated

sensor circuit.

!
Figure 7-4
Network diagram of
the toxic chemical
sensor project.

Project 12

» at right, above

Figure 7-3
The completed toxic sensor system: sensor, monkey,
and network connection.

Sensor XBee
Radio

XPort XBee
Radio

Monkey XBee
Radio

XPort

Internet

PHP script on
Web server

MTT_Chapter7.indd Sec1:228MTT_Chapter7.indd Sec1:228 8/31/07 1:14:35 PM8/31/07 1:14:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 229

MATERIALS

1 USB-to-TTL serial adaptor SparkFun’s (www.
sparkfun.com) BOB-00718 from Chapter 2 will do the
job. If you use a USB-to-RS-232 adaptor such as a
Keyspan or Iogear dongle, refer to Chapter 2 for the
schematics to convert RS-232-to-5V TTL serial. You’ll
use this for configuring the radios only.

Sensor Circuit
1 solderless breadboard such as Digi-Key (www.
digikey.com) part number 438-1045-ND, or Jameco
(www.jameco.com) part number 20601
1 MaxStream XBee OEM RF module available from
www.maxstream.net or www.gridconnect.com, part
number GC-WLM-XB24-A
1 5V regulator The LM7805 series (SparkFun
part number COM-00107, Digi-Key part number
LM7805CT-ND) work well.
1 3.3V regulator The LD1117-33V (SparkFun part
number COM-00526) or the MIC2940A-3.3WT (Digi-
Key part number 576-1134-ND) work well.
1 2mm breakout board The XBee modules listed
here have pins spaced 2mm apart. To use them on a
breadboard, you’ll need a breakout board that shifts
the spacing to 0.1 inches. You could solder wires on
to every pin, or you could make or purchase a printed
circuit board that shifts the pins. SparkFun’s Breakout
Board for XBee Module (BOB-08276) works.
2 rows of 0.1-inch header pins as available from
most electronics retailers
2 2mm female header rows Samtec (www.samtec.
com) part number MMS-110-01-L-SV. Samtec, like
many part makers, supplies free samples of this
part in small quantities. SparkFun sells these as part
number PRT-08272.
1 1µF capacitor Digi-Key part number P10312-ND
1 10µF capacitor SparkFun part number
COM-00523, Digi-Key part number P11212-ND
1 Figaro Sensors TGS2620 sensor for the detection
of solvent vapors. You can order this directly from
Figaro (www.figarosensor.com or +1-847-832-1701).
2 LEDs
1 4.7KΩ resistor

Internet Connection Circuit
1 Lantronix embedded device server Available
from many vendors, including Symmetry Electronics
(www.semiconductorstore.com) as part number
CO-E1-11AA (Micro) or WM11A0002-01 (WiMicro), or
XP1001001-03R (XPort). This example uses an XPort.

»

»

»

»

»

»

»

»

»
»

»

»
»

»

1 RJ45 breakout board SparkFun part number
BOB-00716 (needed only if you’re using an XPort).
1 solderless breadboard such Digi-Key part number
438-1045-ND, or Jameco part number 20601
1 MaxStream XBee OEM RF module MaxStream
part number GC-WLM-XB24-A
1 3.3V regulator SparkFun part number COM-00526
or Digi-Key part number 576-1134-ND
1 2mm breakout board SparkFun BOB-08276
2 rows of 0.1-inch header pins
2 2mm female header rows Samtec part number
MMS-110-01-L-SV. SparkFun part number PRT-08272.
1 1µF capacitor Digi-Key part number P10312-ND
1 10µF capacitor SparkFun part number
COM-00523, Digi-Key part number P11212-ND
2 LEDs
1 momentary reset switch SparkFun part number
COM-00097, Digi-Key part number SW400-ND.

Cymbal Monkey Circuit
1 solderless breadboard such as Digi-Key part
number 438-1045-ND, or Jameco part number 20601
1 MaxStream XBee OEM RF module MaxStream
part number GC-WLM-XB24-A
1 cymbal monkey The one used here is a Charlie
Chimp, ordered from the Aboyd Company
(aboyd.com), part number ABC 40-1006.

NOTE: If your Monkey uses a 3V power supply (such as 2 D

batteries), you won’t need the LD1117-33V regulator. Make sure

that there’s adequate amperage supplied for the radios. If you

connect the circuit as shown and the radios behave erratically,

the monkey’s motor may be drawing all the power. If so, use a

separate power supply for the radio circuit.

1 2mm breakout board SparkFun BOB-08276
2 rows of 0.1-inch header pins
2 2mm female header rows Samtec part number
MMS-110-01-L-SV. SparkFun part number PRT-08272.
2 LEDs
1 10K trimmer potentiometer SparkFun part number
COM-00104, Digi-Key part number D4AA14-ND
1 TIP120 Darlington NPN transistor. Digi-Key part
number 497-2539-5-ND.
1 1N4004 power diode. Digi-Key part number
1N4004-E3/54GICT-ND.
1 1KΩ resistor
1 100µF capacitor. SparkFun part number
COM-00096, Digi-Key part number P10195-ND

»

»

»

»

»
»
»

»
»

»
»

»

»

»

»
»
»

»
»

»

»

»
»

MTT_Chapter7.indd Sec1:229MTT_Chapter7.indd Sec1:229 8/29/07 1:55:31 PM8/29/07 1:55:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

230 MAKING THINGS TALK

Figure 7-5
XBee radio wired to a serial-to-USB
device.

MTT_Chapter7.indd Sec1:230MTT_Chapter7.indd Sec1:230 8/29/07 1:55:56 PM8/29/07 1:55:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 231

You’ll be building three separate circuits for this project, so
the parts list is broken down for each one. Most of these
items are available at retailers other than the ones listed
here, if you can’t find them at the places mentioned in the
materials list.

Radio Settings
Solder the XBee breakout boards as you did in Chapter 6.
Connect one of the radio breakout boards to the FTDI
USB-to-serial adaptor, as shown in Figure 7-5. You’ll use
this circuit for configuring the radios only. Notice that
the FTDI module is supplying 3.3V for the radio, so no
regulator is needed. If you’re using a different USB-to-
serial adaptor, you must supply 3.3V for the radio.

You’ve got three radios: the sensor’s radio, the monkey’s
radio, and the XPort’s radio. You know from Chapter 5
that you can configure the radios’ addresses, destina-
tion addresses, and Personal Area Network (PAN) IDs. In
addition, you can also configure some of their behavior.
For example, you can configure the digital and analog I/O
pins to operate as inputs, outputs, or to turn off. You can
also set them to be digital or analog inputs, or digital or
pulse width modulation (PWM) outputs. You can even link
an output pin’s behavior to the signals it receives from
another radio.

The sensor radio is the center of this project. You’ll configure
it to read an analog voltage on its first analog input (AD0,
pin 20) and broadcast the value that it reads to all other
radios on the same PAN. Its settings are as follows:

• ATMY01 – Sets the sensor radio’s source address
• ATDLFFFF – Sets the destination address to broadcast

to the whole PAN
• ATID1111 – Sets the Personal Area Network (PAN)
• ATD02 – Sets I/O pin 0 (D0) to act as an analog input
• ATIR64 – Sets the analog input sample rate to 100

milliseconds (0x64 hex)
• ATIT5 – Sets the radio to gather five samples before

sending, so it will send every 500 milliseconds
(5 samples x 100 milliseconds sample rate = 500
milliseconds)

The monkey radio will listen for messages on the PAN, and
if any radio sends it a packet of data with an analog sensor
reading formatted the way it expects, it will set the first
pulse width modulation output (PWM0) to the value of the
received data. In other words, the monkey radio’s PWM0
output will be linked to the sensor radio’s analog input.
Its settings are as follows:

• ATMY02 – Sets the monkey radio’s source address
• ATDL01 – Sets the destination address to send only to

the sensor radio (address 01). Doesn’t really matter,
as this radio won’t be sending.

• ATID1111 – Sets the Personal Area Network (PAN)
• ATP02 – Sets PWM pin 0 (P0) to act as a PWM output
• ATIU1 – Sets the radio to send any I/O data packets

out the serial port. This is used for debugging purposes
only; you won’t actually attach anything to this radio’s
serial port in the final project.

• ATIA01 or ATIAFFFF – Sets the radio to set its PWM
outputs using any I/O data packets received from
address 01 (the sensor radio’s address). If you set this
parameter to FFFF, the radio sets its PWM outputs
using data received from any radio on the PAN.

The XPort radio listens for messages on the PAN and
sends them out its serial port to the XBee. This radio’s
settings are the simplest, as it’s doing the least. Its
settings are as follows:

• ATMY03 – Sets the XPort radio’s source address
• ATDL01 – Sets the destination address to send only

to the sensor radio (address 01). Again, doesn't matter,
as this radio won’t be sending.

• ATID1111 – Sets the Personal Area Network (PAN)
• ATIU1 – Sets the radio to send any I/O data packets out

the serial port. This data will go to the attached XPort.

Here’s a summary of all of the settings:

NOTE: If you want to reset your XBee radios to the factory

default settings before configuring for this project, send them the

command ATRE\r

Make sure to save the configuration to each radio’s
memory by finishing your commands with WR. To set the
whole configuration of these, you can do it line by line, or
all at once. For example, to set the sensor radio, type:

+++

Sensor Radio Monkey Radio XPort Radio

MY = 01

DL = FFFF

ID = 1111

D0 = 2

IR = 64

IT = 5

MY = 02

DL = 01

ID = 1111

P0 = 2

IU = 1

IA = 01 (or FFFF)

MY = 03

DL = 01

ID = 1111

IU = 1

MTT_Chapter7.indd Sec1:231MTT_Chapter7.indd Sec1:231 8/29/07 1:56:25 PM8/29/07 1:56:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

232 MAKING THINGS TALK

Then wait for the radio to respond with OK. Then type the
following (the 0 in D02 is the number 0):

ATMY1, DLFFFF\r

ATID1111, D02, IR64\r

ATIT5, WR\r

For the monkey radio, the configuration is:

ATMY2, DL1\r

ATID1111, P02\r

ATIU1, IA1, WR\r

And for the XPort radio, it’s:

ATMY3, DL1\r

ATID1111, IU1, WR\r

The Circuits
Once you’ve got the radios configured, set up the circuits
for the sensor, the monkey, and the XPort. In all of these
circuits, make sure to include the decoupling capacitors
on either side of the voltage regulator. The XPort and the
XBee radios tend to be unreliable without them.

The Sensor Circuit
The VOC sensor takes a 5V supply voltage, so you need
a 5V regulator for it, a 3.3V regulator for the XBee, and
a power supply that’s at least 9V to supply voltage to
the circuit. Figure 7-6 shows the circuit. The VOC sensor
should output between 0 and 3.3V under the most likely
shop conditions, but test it before you go too much
further. Connect and power the circuit, but leave out the
wire connecting the sensor’s output to the XBee’s analog
input. Power up the circuit, and let it heat for a minute or
two. The circuit takes time to warm up, because there’s
a heater element in the sensor. Measure the voltage
between the sensor’s output and ground. You should get
about 1 volt if the air is free of VOCs. While still measuring
the voltage, take a bottle of something that has an organic
solvent (I used hand sanitizer, which has a lot of alcohol in
it), and gently waft the fumes over the sensor. Be careful
not to breathe it in yourself. You should get something
considerably higher — up to 3 volts. If the voltage exceeds
3.3V, change the fixed resistor until you get results in
a range below 3.3V, even when the solvent’s fumes are
high. Once you’ve got the sensor reading in an acceptable
range, connect its output to the XBee’s analog input pin,
which is pin 20. Make sure to connect the XBee’s voltage
reference pin (pin 14) to 3.3 volts as well.

NOTE: Make sure to air out your workspace as soon as you’ve

tested the sensor. You don’t want to poison yourself making

a poison sensor!

To test whether the XBee is reading the sensor correctly,
connect its TX pin to the USB-to-serial adaptor’s RX pin, its
RX pin to the adaptor’s TX pin, and connect their ground
lines together. Then plug the adaptor into your computer
and open a serial connection to it. Type +++, and wait for
the OK. Then type ATIS\r (this command forces the XBee
to read the analog inputs and return a series of values).
You’ll get a reply like this:

1
200
3FF

Don’t worry about what the values are for now, as long as
you’re getting something. You’ll see the actual values as
the project develops later.

The Monkey Circuit
To control the monkey, disconnect the monkey’s motor
from its switch and connect the motor directly to the
circuit shown in Figure 7-7. The monkey’s battery pack
supplies 3V, which is enough for the XBee radio, so you can
power the whole radio circuit from the monkey. Connect
leads from the battery pack’s power and ground to the
board. If your monkey runs on a different voltage, make
sure to adapt the circuit accordingly, so that your radio
circuit is getting at least 3V. Figure 7-8 shows the modifica-
tions in the monkey’s innards. I used an old telephone cord
to wire the monkey to the board, for convenience.

The cymbal monkey circuit takes the variable output that
the radio received and turns it into an on-off switch. The
PWM output from the XBee radio controls the base of a
TIP120 transistor. The monkey itself has a motor built into
it, which is controlled by a TIP120 Darlington transistor
in this circuit. When the transistor’s base goes high, the
motor turns on. When it goes low, the motor turns off. The
motor has physical inertia, however, so if the length of the
pulse is short and the length of the pause between pulses
is long, the motor doesn’t turn. When the duty cycle of the
pulse width (the ratio of the pulse and the pause) is high
enough, the motor starts to turn.

To test this circuit, make sure that the sensor radio is
working, and turn it on. When the sensor’s value is low, the
motor should be turned off, and when the sensor reads a
high concentration of VOCs, the motor will turn on and the

MTT_Chapter7.indd Sec1:232MTT_Chapter7.indd Sec1:232 8/29/07 1:58:33 PM8/29/07 1:58:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 233

Figure 7-6
XBee radio connected to a
Figaro Sensors VOC sensor. The
detail photo shows the wiring
underneath the XBee radio.

All the projects in this chapter

are made using the LD1117-33V 3.3V

voltage regulator. The pins on this

regulator are configured differently

from the pins on the other regulators

used in the book. Be sure to check

the data sheet for your regulator to

be sure you have the pins correct.

You should make a habit of checking

this because the same catalog

number may be supplied as slightly

different parts. For example, SparkFun

part number COM-00526 (Voltage

Regulator—3.3V) can arrive either as

an LD1117-33V or an LM7833, which do

not have the same pin configuration.

8

MTT_Chapter7.indd Sec1:233MTT_Chapter7.indd Sec1:233 8/29/07 1:58:54 PM8/29/07 1:58:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

234 MAKING THINGS TALK

Figure 7-7
XBee radio connected to a Cymbal Monkey. The detail shows
the circuit without the XBee, to reveal the wiring underneath.

MTT_Chapter7.indd Sec1:234MTT_Chapter7.indd Sec1:234 8/29/07 1:59:34 PM8/29/07 1:59:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 235

Figure 7-8
The insides of the monkey,
showing the wiring modifica-
tions. Solder the power to the
breadboard to the positive
terminal of the battery. Solder
the ground wire to the ground
terminal. Cut the existing motor
leads, and add new ones that
connect to the breadboard.

A

A. Motor wires replaced here B. Power C. Ground

B

C

A

monkey will play his cymbals in warning. Use the poten-
tiometer to affect the motor’s activation threshold. Start
with the potentiometer set very high, then slowly turn it
down until the motor turns off. At that point, expose the
sensor to some alcohol. The motor should turn on again,
and should go off when the air around the sensor is clear.
If you’re unsure that the motor circuit is working correctly,
connect an LED from 3V to the collector of the transistor
instead of the motor. It should grow brighter when the
sensor reading is higher, and dimmer when the sensor
reading is lower. The LED has no physical inertia like the
motor does, so it turns on at a much lower duty cycle.

The XPort Circuit
The XPort, like the XBee radios, takes a 3.3V supply voltage,
so you can run both from a 3.3V regulator, as shown in
Figure 7-9. Before you connect this circuit, connect the
XPort to your serial port using the circuit in Figure 7-10,
and configure it as follows. See “Configuring the Micro” in
Chapter 4 for detailed configuration instructions.

Server settings:

IP Address : as appropriate for your network

Set Gateway IP Address Y

Gateway IP addr as appropriate for your network

Netmask: Number of Bits for Host Part 8

Channel 1 settings:

Baudrate: 9600

I/F Mode: 4C

Flow: 00

Port No: 10001

ConnectMode: D4

Send '+++' in Modem Mode: N

Auto increment source port: N

Remote IP Address : 0.0.0.0

Remote Port 0

DisConnMode 00

FlushMode 00

DisConnTime 00:00

SendChar 1 00

SendChar 2 00

Figure 7-10 shows an XPort connected to an FTDI USB-to-
serial adaptor. This circuit can be used to set the XPort’s
settings. Even though the FTDI adaptor can supply 3.3V,
it’s worthwhile to use a regulator, because the XPort
performs inconsistently when powered directly from the
FTDI adaptor’s 3.3V supply. To test this circuit, connect
your XPort to your local area network and open a telnet
session to its IP address on port 10001. If you’re on Linux
or Mac OS X, make one change now. When you’re logged
in, type Control-] and you’ll get a telnet prompt like this:
telnet>

MTT_Chapter7.indd Sec1:235MTT_Chapter7.indd Sec1:235 8/29/07 2:00:27 PM8/29/07 2:00:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

236 MAKING THINGS TALK

Figure 7-9
XBee radio connected to an XPort. The detail photos show the wiring under the XBee radio and the XPort.

MTT_Chapter7.indd Sec1:236MTT_Chapter7.indd Sec1:236 8/29/07 2:01:04 PM8/29/07 2:01:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 237

Figure 7-10
XPort connected to a USB-to-serial adaptor. The detail photo shows the wiring under the XPort.

MTT_Chapter7.indd Sec1:237MTT_Chapter7.indd Sec1:237 8/29/07 2:03:10 PM8/29/07 2:03:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

238 MAKING THINGS TALK

Then type: mode char\r

This command puts telnet into character mode, meaning
that it will send every character as you type it. You’ll need
to be in this mode in order to send the +++ string (by
default, the Windows telnet program is in the correct mode).

Now try typing XBee commands to read the configuration.
Start with the usual +++ and wait for the OK, then ATMY\r,
ATDL\r and so forth. If you’ve wired the circuit correctly,
you should get responses from the XBee just as if you
were connected to its serial port — because you are!

Once you know that you’ve got serial data transmitting
from the XPort to the XBee, power up the sensor radio
while you’re still logged in to the XPort. Once it starts up,
it should be transmitting regularly, and you should see the
data coming into your telnet window. It’s being transmit-
ted from the sensor’s radio, then to the XPort’s radio, on to
the XPort, and to your window via the network. Likewise,
if you plug the monkey radio in now, you should see the
monkey clashing his cymbals as the data changes from
the sensor. Now all of your hardware works.

The Server Code
Once you have all of the circuits working, it’s time to get
the data onto the Web. To do this, you’re going to write a
PHP script that logs into the XPort, retrieves the data, and
displays the results. It will display a summary value telling
you the sensor’s average reading over 10 packets of data,
and it will write that value to a file on the server, so you can
see the sensor readings over time if you want.

So far, you’ve been able to rely on the XBee radios to do
their work without having to understand their message

protocol. Now it’s time to interpret that protocol. The XBee
radios format the readings from their analog-to-digital
converters into a packet before they transmit. The format
of the packet is explained in the MaxStream XBee 802.15.4
user’s manual. It works like this:

• Byte 1: 0x7E, the start byte value.
• Byte 2-3: packet size, a 2-byte value. This depends on

your other settings.
• Byte 4: API identifier value, a code that says what this

response is.
• Byte 5-6: XBee sender’s address.
• Byte 7: RSSI, Received Signal Strength Indicator.
• Byte 8: Broadcast options (not used here).
• Byte 9: Number of samples in the packet (you set it to 5

using the IT command shown earlier).
• Byte 10–11: Which I/O channels are currently being

used. This example assumes only one analog channel,
AD0, and no digital channels are in use.

• Byte 12–21: 10-bit values, each ADC sample from the
sender. Set this to 5 using the IT command.

Because every packet starts with a constant value,
0x7E (that’s decimal value 126), you can start your PHP
program looking for that value.

The following
program opens

a socket to the XPort, reads bytes and
puts them in an array until it’s seen the
value 0x7E ten times, then closes the
socket. In other words, it attempts to
read ten packets. Save this file to your
server as toxic_report.php.

NOTE: In the following code, set $ip to the

IP address of your XPort.

<?php

/* toxic_report.php

 Socket connection string reader

 Language: PHP

 This program opens a socket connection to an XPort

 and reads bytes from the socket.

*/

// Global variables. These can be used by any of the script's functions:

global $ip, $port, $packetsToRead, $timeStamp, $messageString;

$ip = "192.168.1.236"; // IP adddress to connect to.

 // Change this to your XPort's IP address.

$port = 10001; // port number of IP

If your PHP script is running on a different network

than your XPort (such as on a web hosting company’s

server), you’ll need to find a way to put your XPort on the

Internet. See “Making a Device Visible to the Internet

When It Has a Private IP Address,” later in this chapter, for

more information.

!

 Connect It

»

MTT_Chapter7.indd Sec1:238MTT_Chapter7.indd Sec1:238 8/29/07 2:05:24 PM8/29/07 2:05:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 239

Continued from opposite page.

$packetsToRead = 10; // total number of packets to read

$packetCounter = 0; // counter for packets when you're reading them

$bytes = array(); // array for bytes when you're reading them

// open a socket to the XPort:

$mySocket = fsockopen ($ip, $port, $errorno, $errorstr, 30);

if (!$mySocket) {

 //if the socket didn't open, return an error message

 return "Error $errorno: $errorstr
";

} else {

 // if the socket exists, read packets until you reach $packetsToRead:

 while ($packetCounter < $packetsToRead) {

 // read a character from the socket connection,

 // and convert it to a numeric value using ord(),

 $char = ord(fgetc($mySocket));

 // if you got a header byte, deal with the last array

 // of bytes first:

 if ($char == 0x7E) {

 // increment the packet counter:

 $packetCounter++;

 }

 // push the current byte onto the end of the byte array:

 array_push($bytes, $char);

 }

 // iterate over the array of bytes and print them out:

 foreach ($bytes as $thisByte) {

 // if the current byte = 0x7E, it starts a new packet;

 // print a break first, so you see each packet on a new line

 // in the browser:

 if ($thisByte == 0x7E) {

 echo "
";

 }

 echo "$thisByte ";

 }

 // close the socket:

 fclose ($mySocket);

}

?>

When you save this to your server and
open the script in a browser, you’ll get
a result like this:

NOTE: If you’re getting weird numbers,

power off the sensor and Lantronix circuits,

wait about a minute, and power them back

on. Devices sometimes get confused.

201 1 201 1 200 1 197 91

126 0 18 131 0 1 43 0 5 2 0 1 197 1 196 1 198 1 198 1 197 106

126 0 18 131 0 1 43 0 5 2 0 1 197 1 193 1 193 1 192 1 192 125

126 0 18 131 0 1 44 0 5 2 0 1 194 1 194 1 193 1 190 1 190 130

126 0 18 131 0 1 43 0 5 2 0 1 189 1 189 1 191 1 190 1 190 143

126 0 18 131 0 1 43 0 5 2 0 1 190 1 186 1 186 1 186 1 188 156

126 0 18 131 0 1 43 0 5 2 0 1 187 1 187 1 186 1 183 1 183 166

126 0 18 131 0 1 43 0 5 2 0 1 182 1 182 1 184 1 183 1 183 178

126 0 18 131 0 1 43 0 5 2 0 1 181 1 180 1 179 1 179 1 182 191

126 0 18 131 0 1 43 0 5 2 0 1 181 1 181 1 180 1 178 1 177 195

126

MTT_Chapter7.indd Sec1:239MTT_Chapter7.indd Sec1:239 8/29/07 2:05:52 PM8/29/07 2:05:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

240 MAKING THINGS TALK

It’d be handy to
have each packet

in its own array. To make that happen,
add a new global array variable called
$packets before you open the socket:

$packets = array(); // array to hold the arrays of bytes

Then change the while() loop,
adding code to push the byte array on
to the packet array when a new header
byte arrives, and then to empty the
byte array to receive a new packet:

Most of the lines have 22 bytes,
corresponding to the packet format
described earlier. You may wonder why
the first line of the output shown above
didn’t have a full complement of bytes.
It’s simply because there’s no way to
know what byte the Lantronix XBee
radio is receiving when the PHP script
connects to it.

You want only full packets, so add a
function to parse the array and read
only full packets. This function also
extracts the XBee address of the
sender, and averages the ADC readings
in bytes 12 to 21 of the packet.

8 while ($packetCounter < $packetsToRead) {

 // read a character from the socket connection,

 // and convert it to a numeric value using ord(),

 $char = ord(fgetc($mySocket));

 // if you got a header byte, deal with the last array

 // of bytes first:

 if ($char == 0x7E) {

 // push the last byte array onto the end of the packet array:

 array_push($packets, $bytes);

 // clear the byte array:

 $bytes = array();

 // increment the packet counter:

 $packetCounter++;

 }

 // push the current byte onto the end of the byte array:

 array_push($bytes, $char);

 }

Add this at the end of the program
(but before the closing ?>):

8 /*--------------------------------------*/

function parsePacket($whichPacket) {

 $adcStart = 11; // ADC reading starts at 12th byte

 $numSamples = $whichPacket[8]; // number of samples in the packet

 $total = 0; // sum of ADC readings for averaging

 // if you got all the bytes, find the average ADC reading:

 if(count($whichPacket) == 22) {

 // read the address -- it's a two-byte value, so you

 // add the two bytes as follows:

 $address = $whichPacket[5] + $whichPacket[4] * 256;

 // read $numSamples 10-bit analog values, two at a time,

 // because each reading is two bytes long:

 for ($i = 0; $i < $numSamples * 2; $i=$i+2) {

 // 10-bit value = high byte * 256 + low byte:

 $thisSample = ($whichPacket[$i + $adcStart] * 256) +

 $whichPacket[($i + 1) + $adcStart];

 // add the result to the total for averaging later:

 $total = $total + $thisSample; »

 Refine It

MTT_Chapter7.indd Sec1:240MTT_Chapter7.indd Sec1:240 8/29/07 2:10:19 PM8/29/07 2:10:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 241

Continued from opposite page.

 }

 // average the result:

 $average = $total / $numSamples;

 return $average;

 } else {

 return -1;

 }

}

To call this routine, add another
variable at the beginning of the
program called $totalAverage:

8 $totalAverage = 0; // average of sensor readings in each packet

Next, replace the for() loop that
iterates over the byte array and prints
the bytes with the following one that
iterates over the array of packets:

8 // iterate over the array of arrays and print them out:

 foreach ($packets as $thisPacket) {

 $packetAverage = parsePacket($thisPacket);

 echo "Average sensor reading in this packet: $packetAverage
";

 }

You should get a result like this:

Average sensor reading in this packet: -1

Average sensor reading in this packet: 368.2

Average sensor reading in this packet: 368.8

Average sensor reading in this packet: 368.2

Average sensor reading in this packet: 368

Average sensor reading in this packet: 368.6

Average sensor reading in this packet: 367.6

Average sensor reading in this packet: 366.6

Average sensor reading in this packet: 368.2

Average sensor reading in this packet: 367.2

When there’s not a complete packet,
parsePacket() returns –1, so you know
if you’ve got a good reading or not.

Now you’ve got ten packets of data
coming in, and you’re averaging the
sensor readings from each packet. To
display an overall reading, you need a
function to average the results from
all of the packets. Here’s a function to
do it:

8 /*--------------------------------------*/

function averagePackets($whichArray) {

 $packetAverage = 0; // average of all the sensor readings

 $validReadings = 0; // number of valid readings

 $readingsTotal = 0; // total of all readings, for averaging

 // iterate over the packet array:

 foreach ($whichArray as $thisPacket) {

 // parse each packet to get the average sensor reading:

 $thisSensorReading = parsePacket($thisPacket);

 »

MTT_Chapter7.indd Sec1:241MTT_Chapter7.indd Sec1:241 8/29/07 2:16:33 PM8/29/07 2:16:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

242 MAKING THINGS TALK

But Wait! That’s Not All!
Perhaps you’d like to set up several sensors, each attached
to its own XBee/XPort combination, or perhaps you’d like
to save the sensor data to a file so that you can see the
levels over time. To do that, you need to add a form so you

 This function replaces the for()
loop that you just added to print the
results, so you can take that loop out
now, and just write:

Now you’ve got a web page that gives
you a snapshot of the air quality in your
shop. The page should read something
like this:

Sensor Reading :349.98

8 // average the readings from all the packets to get a final

 // sensor reading:

 $totalAverage = averagePackets($packets);

 echo "Sensor Reading :" . $totalAverage;

First, add the form at the end of
the script. This is just HTML, and it
comes at the very end, outside your
closing PHP ?> tag:

8 <html>

 <head>

 </head>

 <body>

 <h2>

 <?=$messageString?>

 </h2>

 <hr>

 <form name="message" method="post" action="toxic_report.php">

 IP Address: <input type="text" name="ip" value="<?=$ip?>"

can change the variables from the Web, and you need to
add a routine to write the sensor reading to a file. While
you’re at it, you need to check the time of the reading so
that you can add a time stamp to the saved readings.

Continued from previous page.

 if ($thisSensorReading > 0 && $thisSensorReading < 1023) {

 // if the sensor reading is valid, add it to the total:

 $readingsTotal = $readingsTotal + $thisSensorReading;

 // increment the total number of valid readings:

 $validReadings++;

 }

 }

 if ($validReadings > 0) {

 // round the packet average to 2 decimal points:

 $packetAverage = round($readingsTotal / $validReadings, 2);

 return $packetAverage;

 } else {

 return -1;

 }

}

»

MTT_Chapter7.indd Sec1:242MTT_Chapter7.indd Sec1:242 8/29/07 2:16:58 PM8/29/07 2:16:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 243

You can see a few PHP tags in the
HTML. These add the PHP variables to
the HTML. Next, you need some code
in the script to read the form. Add the
following near the beginning of the
program, after the global variables,
but before you open the socket to the
XPort:

8 //if a filled textbox was submitted, get the values:

if ((isset($_POST["ip"])) &&

 (isset($_POST["port"])) &&

 (isset($_POST["packetsToRead"]))) {

 $ip = $_POST["ip"];

 $port = $_POST["port"];

 $packetsToRead = $_POST["packetsToRead"];

}

Figure 7-11
The final web page of the toxic report.

Add two new variables to the
beginning of the program, one to get
the time, and one to make the HTML
code simpler to write:

// $messageString is used to return messages for printing in the HTML:

$messageString = "No Sensor Reading Taken";

// Get the time and date:

$timeStamp = $date = date("m-d-Y H:i:s");

8

To use these two variables, change
the lines that average and print the
sensor reading like so. You’ll get a page
that looks like Figure 7-11.

8 // average the readings from all the packets to get a

 // final sensor reading:

 $totalAverage = averagePackets($packets);

 // update the message for the HTML:

 $messageString =

 "Sensor Reading at: ". $timeStamp . ": " . $totalAverage;

Continued from opposite page.

 size="15" maxlength="15">

 Port: <input type="text" name="port" value="<?=$port?>"

 size="5" maxlength="5">

 Number of readings to take: <input type="text"

 name="packetsToRead" value="<?=$packetsToRead?>" size="6">

 <input type="submit" value="Send It">

 </form>

 </body>

</html>

MTT_Chapter7.indd Sec1:243MTT_Chapter7.indd Sec1:243 8/29/07 2:17:18 PM8/29/07 2:17:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

244 MAKING THINGS TALK

Now you can add some code to
save the sensor data to a server. Add
one more function to do this:

8 /*--------------------------------------*/

function writeToFile($whichReading) {

 global $timeStamp, $messageString;

 // combine the reading and the timestamp:

 $logData = "$timeStamp $whichReading\n";

 $myFile = "datalog.txt"; // name of the file to write to:

 // check to see whether the file exists and is writable:

 if (is_writable($myFile)) {

 // try to write to the file:

 if (!($fh = fopen($myFile, "a"))) {

 $messageString = "Couldn't open file $myFile";

 } else {

 // if you could open the file but not write to it, say so:

 if (!fwrite($fh, $logData)) {

 $messageString = "Couldn't write to $myFile";

 }

 }

 } else {

 //if it's not writeable:

 $messageString = "The file $myFile is not writable";

 }

}

To enable the PHP script to write to the data
log file, you’ll need to create the file on your

server first. Make a blank text file called datalog.txt in the
same directory as the PHP script (at the Linux or Mac OS
X terminal, you can use the command touch datalog.txt).
Change its permissions so that it’s readable and writable
by others. From the command line of a Linux or Mac OS X
system, you’d type:

chmod o+rw datalog.txt

If you’re creating the file using a GUI-based program, get
info on the file and set the permissions that way. Figure
7-12 shows the Get Info window from BBEdit, which is

similar to many others. Once you’ve made this file and
viewed the web page a few times, open the datalog.txt file.
You’ll see something like this:

02-17-2007 13:01:38 338.98
02-17-2007 13:01:44 338.93
02-17-2007 13:09:57 338.31
02-17-2007 13:10:03 338.2
02-17-2007 13:10:09 338.62

Now that you’ve got the data, you can work with it in inter-
esting ways. For example, you could write another PHP
script to read the sensor regularly and graph the results.
X

Finally, just before the socket
closing at the end of the main script,
add the following to call this function:

You can find a complete listing in
Appendix C.

8 // if you got a good reading, write it to the datalog file:

 if ($totalAverage > 0) {

 writeToFile($totalAverage);

 }

MTT_Chapter7.indd Sec1:244MTT_Chapter7.indd Sec1:244 8/29/07 2:17:42 PM8/29/07 2:17:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 245

Figure 7-12
Setting the read-write permissions for
a file from a GUI-based program.

Up until now, all of the Internet-related projects in this book

have either worked only on a local subnet, or only sent data

outbound and waited for a reply. This is the first project in

which your Lantronix device needs to be visible to the Net

at large (or at least to the PHP script). If it’s connected to

your home router and has a private IP address, however, that

won’t be the case. To get around this, you need to arrange

for one of your router’s ports to forward incoming messages

and connection requests to your XPort.

To do this, open your router’s administrator interface and

look for controls for “port forwarding” or “port mapping.”

The interface will vary depending on the make and model

of your router, but the settings generally go by one of these

names. It’s easiest if the forwarded port on the router is

the same as the open port on the XPort, so configure it so

that port 10001 on your router connects to port 10001 on

the XPort. Once you’ve done this, any incoming requests to

connect to your router’s public IP address on that port will

be forwarded to the XPort’s private IP address on the same

port. Figures 7-13 and 7-14 show the settings on a Linksys

wireless router and an Apple Airport Express router. On

the Linksys router, Port Forwarding can be found under the

Advanced tab.

Making a Private IP Device Visible to the Internet

Figure 7-13. Port mapping tab on an Apple Airport Express router. Figure 7-14. Port forwarding on a Linksys wireless router.

MTT_Chapter7.indd Sec1:245MTT_Chapter7.indd Sec1:245 8/29/07 2:18:08 PM8/29/07 2:18:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

246 MAKING THINGS TALK

Directed Messages
The more common way to use sessionless protocols is to send directed messages to
the object to which you want to speak. You saw this in action already in Chapter 6, when
you programmed your microcontrollers to speak to each other using the XBee radios.
Each radio had a source address (which you read and set using the ATMY command)
and a destination address (which you read and set using the ATDL command). One
radio’s destination was another’s source, and vice versa. Though there were only two
radios in that example, you could have included many more radios, and decided which
one to address by changing the destination address on the fly.

Sending UDP Datagrams To
and From a Lantronix Device
So far, you’ve used the Lantronix devices to communicate
via TCP, but they can also send and receive UDP packets.
To do this, you have to set the connectMode appropriately
(see “Configuring the Micro” in Chapter 4 for configuration
instructions) and set an address to which the datagrams
will be sent. You can also control when datagrams are sent;
for example, the default is 12 milliseconds after a serial
byte is received, but you can change the time delay, or you
can set the device to send after it receives a specific string
of characters.

To send directed UDP packets, you have to set the connect
Mode to 0xCC, which sets your device to accept any
incoming UDP packets. It also allows you to send UDP
packets to the address and port number that you set for
the remote IP address. Once you’ve set the connectMode
to 0xCC, set the Datagram Type to 01. With these settings,
your XPort, Micro, or WiPort will send only to the remote
IP specified in your configuration. Here’s a summary
of the appropriate settings:

Baudrate: 9600

I/F Mode: 4C

Flow: 00

Port No: 10001

ConnectMode: CC

Datagram Type: 01

Remote IP Address : fill in the address of your personal computer

Remote Port : 10002

Pack Cntrl : 00

SendChar 1 : 00

Whatever bytes you send into the device’s serial port
are sent out as a datagram. There is a limit on the delay
between bytes, but as long as you’re sending all your bytes
at once, you should be fine. If you have a problem, you can
control it by changing the way datagrams are sent. You can
set the device to send only after it gets a specific two-byte
sequence, like \n\r. To do this, change the channel 1
configuration as follows:

packControl : 30

SendChar 1 : 0A (that's 10, or linefeed in ASCII)

SendChar 2 : 0D (13, or carriage return in ASCII)

Then make sure all of your messages end in a linefeed and
a carriage return, and they’ll always get through intact.
For more on this, see the XPort, WiPort, or Micro’s User’s
Guide, available from www.lantronix.com.

The next sketch demonstrates how UDP works using
Processing and an XPort. In it, the sketch and the XPort
form a loop, as shown in Figure 7-15: when you type a u,
the sketch sends UDP packets to the XPort’s Ethernet
connection, and listens on its serial port.

When you type an s, it sends via the XPort’s serial port,
and listens for UDP messages sent by the XPort.

MTT_Chapter7.indd Sec1:246MTT_Chapter7.indd Sec1:246 8/31/07 1:15:30 PM8/31/07 1:15:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 247

Figure 7-15
Message flow in the
Processing UDP
testing program.

User types 's':

Processing

XPort

Serial connection network

Serial connection

Processing

XPort

User types 'u':

1. Processing sends serial message

1. Processing sends UDP message

3. Processing receives message

3. Processing serial message

2. XPort sends UDP message

2. XPort receives UDP message

network

Here is the Process-
ing sketch to test

UDP sending and receiving. To use it,
connect an XPort, WiPort, or Micro to
a USB-to-serial adaptor as shown in
Figure 7-10. Then run this program:

 Test It /*

 Lantronix UDP Tester

 language: Processing

 Sends and receives UDP messages from Lantronix

 serial-to-Ethernet devices.

 Sends a serial message to a Lantronix device connected to the

 serial port when you type "s".

 Sends a UDP message to the Lantronix device when you type "u".

 Listens for both UDP and serial messages and prints them out.

 */

// import UDP library

import hypermedia.net.*;

// import serial library:

import processing.serial.*; »

MTT_Chapter7.indd Sec1:247MTT_Chapter7.indd Sec1:247 8/29/07 2:18:49 PM8/29/07 2:18:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

248 MAKING THINGS TALK

Continued from previous page.

You’ll need to change this number.8

UDP udp; // define the UDP object

int queryPort = 10002; // the port number for the device query

Serial myPort;

String xportIP = "192.168.1.20"; // fill in your XPort's IP here

int xportPort = 10001; // the XPort's receive port

String inString = ""; // incoming serial string

void setup() {

 // create a new connection to listen for

 // UDP datagrams on query port;

 udp = new UDP(this, queryPort);

 // listen for incoming packets:

 udp.listen(true);

 println(Serial.list());

 // make sure the serial port chosen here is the one attached

 // to your XPort:

 myPort = new Serial(this, Serial.list()[0], 9600);

}

//process events

void draw() {

 // a nice blue background:

 background(0,0,255);

}

/*

 send messages when s or u key is pressed:

 */

void keyPressed() {

 switch (key) {

 case 'u':

 udp.send("Hello UDP!\r\n", xportIP, xportPort);

 break;

 case 's':

 String messageString = "Hello Serial!";

 for (int c = 0; c < messageString.length(); c++) {

 myPort.write(messageString.charAt(c));

 }

 break;

 }

}

»

MTT_Chapter7.indd Sec1:248MTT_Chapter7.indd Sec1:248 8/29/07 2:19:12 PM8/29/07 2:19:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 249

Continued from opposite page.

/*

 listen for UDP responses

 */

void receive(byte[] data, String ip, int port) {

 String inString = new String(data); // incoming data converted to string

 println("received "+inString +" from "+ip+" on port "+port);

 // print two blank lines to separate messages from multiple responders:

 print("\n\n");

}

/*

 listen for serial responses

 */

void serialEvent(Serial myPort) {

 // read any incoming bytes from the serial port and print them:

 char inChar = char(myPort.read());

 // if you get a linefeed, the string is ended; print it:

 if (inChar == '\n') {

 println("received " + inString + " in the serial port\r\n");

 // empty the string for the next message:

 inString = "";

 }

 else {

 // add the latest byte to inString:

 inString += inChar;

 }

}

MTT_Chapter7.indd Sec1:249MTT_Chapter7.indd Sec1:249 8/29/07 2:19:35 PM8/29/07 2:19:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

250 MAKING THINGS TALK

In this project, you’ll relay data from
a solar cell via two XBee radios and
an XPort to a Processing sketch that
graphs the result. This project is almost
identical to the previous one in terms of
hardware, but instead of using broadcast
messages, you’ll relay the data from
the first to the second to the third using
directed messages. In addition, the XPort
uses directed UDP datagrams to send
messages to the Processing program.

This project comes from Gilad Lotan and Angela Pablo
(Figure 7-16), students at the Interactive Telecommunica-
tions Program (ITP) at New York University. The ITP is on
the fourth floor of a twelve-story building in Manhattan,
and maintains an 80-watt solar panel on the roof of the
building. The students wanted to watch how much useful
energy the cell receives each day. Because it’s used to
charge a 12-volt battery, it’s useful only when the output
voltage is higher than 12V. In order to monitor the cell’s
output voltage on the fourth floor, Gilad and Angela
(advised by a third student, Robert Faludi), arranged
three XBee radios to relay the signal down the building’s
stairwell from the roof to the fourth floor. From there, the
data went over the local network via an XPort, and on
to an SQL database. This example, based on their work,
uses a smaller solar cell from SparkFun and a Processing
program to graph the data instead of an SQL database.

There are three radios in this project: one attached to the
solar cell, one relay radio standing on its own, and one
attached to the XPort. Figure 7-17 shows the network.

Radio Settings
The radio settings are similar to the settings for the
previous project. The only difference is in the destination
addresses. You won’t be using broadcast addresses this
time. Instead, the solar cell radio (address = 1) will send
to the relay radio (address = 2), and that radio will send
to the XPort radio (address = 3). Instead of forming a
broadcast network, they form a chain, extending the
distance the message travels. Their settings are shown in

Relaying Solar Cell Data Wirelessly

Sensor Radio Relay Radio XPort Radio

MY = 01

DL = 02

ID = 1111

D0 = 2

IR = 0x64

IT = 5

MY = 02

DL = 03

ID = 1111

P0 = 2

IU = 1

IA = 01 (or 0xFFFF)

MY = 03

DL = 01

ID = 1111

IU = 1

the table above. Here are the command strings to set them.
For the solar cell radio:

ATMY1, DL02\r

ATID1111, D02, IR64\r

ATIT5, WR\r

For the relay radio:

ATMY2, DL03\r

ATID1111, P02\r

ATIU1, IA1, WR\r

And for the XPort radio:

ATMY3, DL01\r

ATID1111, IU1, WR\r

The Circuits
The solar cell circuit runs off the solar cell itself, because
the cell can produce the voltage and amperage in daylight
needed to power the radio. The LD1117-33V regulator
can take up to 15V input, and the solar panel’s maximum
output is 12V, so you’re safe there. The MAX8212 IC is a
voltage trigger. When the input voltage on its threshold pin
goes above a level determined by the resistors attached
to the circuit, the output pin switches from high to low.
This change turns on the 2N3906 transistor. The transis-
tor then allows voltage and current from the solar cell to
power the regulator. When the solar cell isn’t producing
enough voltage, the radio will simply turn off. It’s okay if
the radio doesn’t transmit when the cell is dark, because
there’s nothing worth reporting then. The two resistors
attached to the XBee’s AD0 pin form a voltage divider
that drops the voltage from the solar cell proportionally to
something within the 3.3V range of the radio’s analog-to-
digital converter. The 4700µF capacitors store the charge

Project 13

MTT_Chapter7.indd Sec1:250MTT_Chapter7.indd Sec1:250 8/29/07 2:20:04 PM8/29/07 2:20:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 251

Figure 7-16
ITP students Angela Pablo
and Gilad Lotan with the
solar battery pack and
XBee monitor radio.

Figure 7-17
Network diagram for the
solar project.

Sensor XBee
Radio

Internet

RelayXBee
Radio

XPort XBee
Radio

XPort

Processing
program on

personal
computer

The XBee radios can be configured as a mesh network,

using the ZigBee protocol. In a mesh network, some radios

function as routers, similar to how the relay radio works

in this project. Routers can not only relay messages,

but can also store and forward them when the radios

at the end node are not on. This provides the whole

network with net power saving, as the end nodes can be

turned off most of the time. At the time of this writing,

MaxStream’s implementation of the ZigBee protocol

was not fully finished, so this simpler solution was used.

MaxStream recently announced a second generation

of the XBee radios, which uses a different chipset and

implements the ZigBee protocol better than the original

did. For more information, see www.maxstream.net.

Mesh Networking

from the solar cell like batteries, to keep the radio’s supply
constant. Figure 7-18 shows the circuit.

The XPort radio circuit is identical to the one used in the
last project. Build it as shown in Figure 7-9.

MTT_Chapter7.indd Sec1:251MTT_Chapter7.indd Sec1:251 8/29/07 4:00:51 PM8/29/07 4:00:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

252 MAKING THINGS TALK

MATERIALS

1 USB-to-TTL serial adaptor You’ll use this for
testing only, just as you did in the last project.

Solar cell Circuit
1 solderless breadboard such as Digi-Key part
number 438-1045-ND, or Jameco part number 20601
1 MaxStream XBee OEM RF module part number
GC-WLM-XB24-A
1 3.3V regulator The LD1117-33V (SparkFun part
number COM-00526) or the MIC2940A-3.3WT
(Digi-Key part number 576-1134-ND) work well.
1 2mm breakout board The XBee modules listed
here have pins spaced 2mm apart. To use them on a
breadboard, you’ll need a breakout board that shifts
the spacing to 0.1 inches. SparkFun’s Breakout
Board for XBee Module (BOB-08276) does the trick.
2 rows of 0.1-inch header pins as available from
most electronics retailers.
2 2mm female header rows Samtec part number
MMS-110-01-L-SV. Samtec, like many part makers,
supplies free samples of this part in small quantities.
SparkFun sells these as part number PRT-08272.
1 1µF capacitor Digi-Key part number P10312-ND
1 10µF capacitor SparkFun part number
COM-00523, Digi-Key part number P11212-ND
3 4700µF electrolytic capacitors Digi-Key part
number 493-1088-ND. Other vendors carry these, too.
1 MAX8212 voltage monitor. You can order free
samples from Maxim (www.maxim-ic.com) or order
it from Digi-Key, part number MAX8212CPA+-ND.
1 10kΩ resistor
3 100kΩ resistors
1 4.7kΩ resistor
1 1kΩ resistor
1 2N3906 PNP-type transistor such as Digi-Key
part number 2N3906D26ZCT-ND, or SparkFun
part number COM-00522
2 LEDs
1 solar cell SparkFun part number PRT-07840 works
at an acceptable voltage, and can produce enough
current on its own to power the radio.

XPort radio circuit
This is identical to the radio circuit in the previous project.

1 Lantronix embedded device server Available
from many vendors, including Symmetry part number
CO-E1-11AA (Micro), WM11A0002-01 (WiMicro), or
XP1001001-03R (XPort). This example uses an XPort.

»

»

»

»

»

»

»

»
»

»

»

»
»
»
»
»

»
»

»

1 RJ45 breakout board SparkFun part number
BOB-00716 (needed only if you’re using an XPort)
1 solderless readboard such as Digi-Key part
number 438-1045-ND, or Jameco part number 20601
1 MaxStream XBee OEM RF module part number
GC-WLM-XB24-A
1 3.3V regulator The LD1117-33V (SparkFun part
number COM-00526) and the MIC2940A-3.3WT
(Digi-Key part number 576-1134-ND) work well.
1 2mm breakout board SparkFun’s Breakout Board
for XBee Module (BOB-08276)
2 rows of 0.1-inch header pins
2 2mm female header rows Samtec part number
MMS-110-01-L-SV. SparkFun sells these as part
number PRT-08272.
1 1µF capacitor Digi-Key part number P10312-ND
1 10µF capacitor SparkFun part number
COM-00523, or Digi-Key part number P11212-ND
2 LEDs
1 reset switch Any momentary switch such as
SparkFun's COM-00097 or Digi-Key's SW400-ND.

Relay radio circuit
This circuit is just an XBee radio by itself, powered by
a 9V battery.

1 solderless breadboard such as Digi-Key part
number 438-1045-ND, or Jameco part number 20601
1 Maxstream XBee OEM RF module available
from http://www.maxstream.net, or http://www.
gridconnect.com, part number GC-WLM-XB24-A
1 3.3V regulator. The LD1117-33V (SparkFun part
number COM-00526) or the MIC2940A-3.3WT
(Digi-Key part no. 576-1134-ND) will work well.
1 2mm breakout board. SparkFun’s Breakout Board
for XBee Module (BOB-08276)
2 rows of 0.1-inch header pins
2 2mm female header rows Samtec part number
MMS-110-01-L-SV. SparkFun sells these as part
number PRT-08272.
2 LEDs
2 1µF capacitors Digi-Key part number P10312-ND
1 10µF capacitor SparkFun part number
COM-00523, or Digi-Key part number P11212-ND
1 9V battery clip
1 9V battery You can use 3 or 4 AA batteries as well,
if you have a battery holder for them.

»

»

»

»

»

»
»

»
»

»
»

»

»

»

»

»
»

»
»
»

»
»

MTT_Chapter7.indd Sec1:252MTT_Chapter7.indd Sec1:252 8/29/07 4:01:30 PM8/29/07 4:01:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 253

Figure 7-18
XBee radio attached to a
solar cell. The detail photos
show the circuit without
the 4700µF capacitors
and without the XBee, to
reveal the components
and wires beneath.

MTT_Chapter7.indd Sec1:253MTT_Chapter7.indd Sec1:253 8/29/07 4:02:33 PM8/29/07 4:02:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

254 MAKING THINGS TALK

Figure 7-19
The XBee radio relay circuit.

The relay radio circuit is very simple. It’s just
a radio on a battery with its transmit pin and

receive pin connected together. This is how it will relay the
messages. Any incoming messages will get sent out the
serial transmit pin, then back into the receive pin, where
they will be sent out again as transmissions. Figure 7-19
shows the circuit.

Once you’ve got the radios configured and working,
you need to configure the XPort so that it can pass the
messages received from its radio on to the Processing

program. The configuration is identical to that shown
earlier in the “Sending UDP Datagrams to and from a
Lantronix Device” section. The connect Mode is 0xCC, the
datagramType is 01, the remote IP address is the address
of your personal computer, and the remote port number
is 10002. Set SendChar 1 and 2 both to 00.

The Graphing Program
Now that all the hardware is ready, it’s time to write a
Processing sketch to graph the data. The beginning of the
program looks a lot like the UDP tester program shown earlier.

MTT_Chapter7.indd Sec1:254MTT_Chapter7.indd Sec1:254 8/29/07 4:03:15 PM8/29/07 4:03:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 255

/* XBee Packet Reader and Graphing Program

 Reads a packet from an XBee radio via UDP and parses it.

 Graphs the results over time.

 language: Processing

 Reads a packet from an XBee radio

 */

import hypermedia.net.*;

import processing.serial.*;

UDP udp; // define the UDP object

int queryPort = 10002; // the port number for the device query

void setup() {

 // create a new connection to listen for

 // UDP datagrams on query port:

 udp = new UDP(this, queryPort);

 // listen for incoming packets:

 udp.listen(true);

}

void draw() {

 // nothing happens here.

}

/*

 listen for UDP responses

 */

void receive(byte[] data, String ip, int port) {

 int[] inString = int(data); // incoming data converted to string

 print(inString);

 println();

}

The next thing to do is to add
a method to interpret the protocol.
Not surprisingly, this looks a lot like
the parsePacket() function from the
PHP program in the previous project.
Add this method to the end of your
program.

To call it, replace the print() and
println() statements in the receive()
method with this:

parseData(inString);

8 void parseData(int[] thisPacket) {

 int adcStart = 11; // ADC reading starts at byte 12

 int numSamples = thisPacket[8]; // number of samples in packet

 int[] adcValues = new int[numSamples]; // array to hold the 5 readings

 int total = 0; // sum of all the ADC readings

 int rssi = 0; // the received signal strength

 // read the address -- a two-byte value, so you

 // add the two bytes as follows:

 int address = thisPacket[5] + thisPacket[4] * 256;

 // read the received signal strength:

 rssi = thisPacket[6]; »

First you need to import the UDP
library, initialize it, and write a method
to listen for incoming datagrams:

This program will print out strings of
numbers that look a lot like the initial
ones from the PHP program in the VOC
sensor project. That’s because the
datagrams the program is receiving are
the same protocol — the XBee protocol
for sending analog readings.

8

MTT_Chapter7.indd Sec1:255MTT_Chapter7.indd Sec1:255 8/29/07 4:03:51 PM8/29/07 4:03:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

256 MAKING THINGS TALK

Continued from previous page.

 // read <numSamples> 10-bit analog values, two at a time

 // because each reading is two bytes long:

 for (int i = 0; i < numSamples * 2; i=i+2) {

 // 10-bit value = high byte * 256 + low byte:

 int thisSample = (thisPacket[i + adcStart] * 256) +

 thisPacket[(i + 1) + adcStart];

 // put the result in one of 5 bytes:

 adcValues[i/2] = thisSample;

 // add the result to the total for averaging later:

 total = total + thisSample;

 }

 // average the result:

 int average = total / numSamples;

 print("Average reading:" + average + "\t");

 // print the received signal strength:

 println("Signal Strength:" + rssi);

}

Now that you’ve got the average
reading printing out, add some code to
graph the result. For this, you’ll need a
new global variable before the setup()
method that keeps track of where you
are horizontally on the graph:

8 int hPos = 0; // horizontal position on the graph

Now add a new method,
drawGraph(), to the end of the

program:

Call this from the parseData() method,
replacing the println() statement that
prints out the average, as well as the
println() statement that prints out the
signal strength (rssi), like so:

 // draw a line on the graph:

 drawGraph(average/4);

Now when you run the program, it
should draw a graph of the sensor
readings, updating every time it gets
a new datagram.

8 /*

 update the graph

 */

void drawGraph(int graphValue) {

 // draw the line:

 stroke(0,255,0);

 line(hPos, height, hPos, height - graphValue);

 // at the edge of the screen, go back to the beginning:

 if (hPos >= width) {

 hPos = 0;

 //wipe the screen:

 background(0);

 }

 else {

 // increment the horizontal position to draw the next line:

 hPos++;

 }

}

You’ll also need to add a line at the
beginning of the setup() method to
size the window:

8 // set the window size:

 size(400,300);

MTT_Chapter7.indd Sec1:256MTT_Chapter7.indd Sec1:256 8/29/07 4:04:12 PM8/29/07 4:04:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 257

Then add two lines to the setup()
method to initialize the font, The
first line picks a font from the list of
available system fonts, and the second
initializes the font (I didn’t like the first
font in my system’s list, so I went with
the second — choose your own as you
see fit):

8 // create a font with the second font available to the system:

 PFont myFont = createFont(PFont.list()[1], fontSize);

 textFont(myFont);

Add two methods to the end of the
program, eraseTime() and drawTime().
The latter draws the date and time, and
the former draws a black block over
the previous date and time:

8 /*

 Draw a black block over the previous date and time strings

 */

void eraseTime(int xPos, int yPos) {

 // use a rect to block out the previous time, rather than

 // redrawing the whole screen, which would mess up the graph:

 noStroke();

 fill(0);

 rect(xPos,yPos, 120, 80);

 // change the fill color for the text:

 fill(0,255,0);

}

/*

 print the date and the time

 */

void drawTime(int xPos, int yPos) {

 // set up an array to get the names of the months

 // from their numeric values:

 String[] months = {

 "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",

 "Sep", "Oct", "Nov", "Dec" };

 String date = ""; // string to hold the date

 String time = ""; // string to hold the time

 // format the date string:

 date += day();

 date += " ";

 date += months[month() -1];

 date += " ";

 date += year();

 // format the time string:

 time += hour(); »

You’re going to call these methods from
a few different places in the program.
The first is at the end of the setup()
method, to show the initial time:

 // show the initial time and date:

 background(0);

 eraseTime(hPos, 0);

 drawTime(hPos, 0);

The next is at the end of the
parseData() method, to draw the
time of the current line:

 // draw a line on the graph:

 drawGraph(average/4);

 eraseTime (hPos - 1, fontSize * 2);

 drawTime(hPos, fontSize * 2);

Finally, add some code to add a
time stamp. This task requires one
new global variable before the setup()
to set the size of a font to draw text
on the screen:

8 int fontSize = 14; // size of the text font

MTT_Chapter7.indd Sec1:257MTT_Chapter7.indd Sec1:257 8/29/07 4:04:33 PM8/29/07 4:04:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

258 MAKING THINGS TALK

Continued from previous page.

Finally, call these methods from
the drawGraph() method, in the part
where you reset the whole graph. This
is inside the if() statement that checks
to see where the horizontal position is.
This way, each time the graph reaches
the edge of the window, it erases the
whole screen, and updates the initial
time:

That’s the whole program. When it’s
running, it should look like Figure 7-20.

To view the program in its entirety,
see Appendix C.

8 if (hPos >= width) {

 hPos = 0;

 //wipe the screen:

 background(0);

 // wipe the old date and time, and draw the new:

 eraseTime(hPos, 0);

 drawTime(hPos, 0);

 }

 time += ":";

 if (minute() < 10) {

 time += "0";

 time += minute();

 }

 else {

 time +=minute();

 }

 time += ":";

 if (second() < 10) {

 time += "0";

 time += second();

 }

 else {

 time +=second();

 }

 // print both strings:

 text(date, xPos, yPos + fontSize);

 text(time, xPos, yPos + (2 * fontSize));

}

Figure 7-20
The output of the solar graph program.
These sensor values were faked with a
flashlight! Your actual values may differ.

MTT_Chapter7.indd Sec1:258MTT_Chapter7.indd Sec1:258 8/29/07 4:04:54 PM8/29/07 4:04:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

SESSIONLESS NETWORKS 259

Conclusion
Sessionless networks can be really handy when you’re just passing short messages
around and don’t need a lot of acknowledgment. They involve a lot less work, because
you don’t have to maintain the connection. They also give you a lot more freedom
in how many devices you want to address at once.

As you can see by comparing the two projects in this
chapter, there’s not a lot of work to be done to switch from
directed messages and broadcast messages when you’re
making a sessionless network. It’s best to default to directed
messages when you can, in order to reduce the traffic for
those devices that don’t need to get every message.

Now that you’ve got a good grasp of both session-based
and sessionless networks, the next chapters switch
direction slightly to talk about two other activities
connecting networks to the physical world: location
and identification.
X

The solar energy display, by Gilad Lotan and Angela Pablo.

MTT_Chapter7.indd Sec1:259MTT_Chapter7.indd Sec1:259 8/29/07 4:05:14 PM8/29/07 4:05:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

260 MAKING THINGS TALK

MTT_Chp8_F3.indd Sec1:260MTT_Chp8_F3.indd Sec1:260 8/29/07 4:13:21 PM8/29/07 4:13:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

How to Locate
(Almost) Anything
By now, you’ve got a pretty good sense of how to make things talk to each

other over networks. You’ve learned about packets, sockets, datagrams,

clients, servers, and all sorts of protocols. Now that you know how to talk,

the last two chapters deal with two common questions: where am I,

and who am I talking to? Location technologies and identification tech-

nologies share some important properties. As a result, it’s not uncommon

to confuse the two, and to think that a location technology can be used

to identify a person or an object, and vice versa. These are two different

tasks in the physical world, however, and often in the network environment

as well. Systems for determining physical location aren’t always very

good at determining identity, and identification systems don’t do a good

job of determining precise location. Likewise, knowing who’s talking on

a network doesn’t always help you to know where the speaker is. In the

examples that follow, you’ll see methods for determining location and

identification in both physical and network environments.

8
MAKE: PROJECTS

Address 2007 by Mouna Andraos and Sonali Sridhar

This necklace contains a GPS module. When activated, it displays the distance between the necklace and your
home location. Photo by J. Nordberg.

MTT_Chp8_F3.indd Sec1:261MTT_Chp8_F3.indd Sec1:261 8/29/07 4:13:52 PM8/29/07 4:13:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

262 MAKING THINGS TALK

Network Location and Physical Location
Locating things is one of the most common tasks people want to achieve with sensor
systems. Once you understand the wide range of things that sensors can detect, it’s
natural to get excited about the freedom this affords. All of a sudden, you don’t have to
be confined to a chair to interact with computers. You’re free to dance, run, jump — and
it’s still possible for a computer to read your action and respond in some way.

The downside of this freedom is the perception that in a
networked world, you can be located anywhere. Ubiqui-
tous surveillance cameras and systems like Wireless E911,
a system for locating mobile phones on a network, make
it seem as if anyone or anything can be located anywhere
and at any time, whether you want to be located or not.
The reality of location technologies lies somewhere in
between these extremes.

Locating things on a network is different than locating
things in physical space. As soon as a device is connected
to a network, you can get a general idea of its location
using a variety of means, from address lookup to
measuring its signal strength, but that doesn’t mean that
you know its physical location. You just know its relation-
ship to other nodes of the network. You might know that
a cell phone is closest to a given cell transmitter tower, or
that a computer is connected to a particular Wi-Fi access
point. You can use that information along with other data
to build up a picture of the person using the device. If
you know that the cell transmitter tower is less than a
kilometer from you, then you’d know that the person with
the cell phone is going to reach you soon, and you can act
appropriately in response. For many network applications,
you don’t need to know physical location as much as you
need to know relationship to other nodes in the network.

!Step 1: Ask a Person
People are really good at locating things. At the physical
level, we have a variety of senses to throw at the problem
and a brain that’s wonderful at matching patterns of
shapes and determining distances from different sensory
clues. At the behavioral level, we’ve got thousands of
patterns of behavior that make it easier to determine why
you might be looking for something. Computer systems
don’t have these same advantages, so when you’re
designing an interactive system to locate things or people,
the best tool you have to work with, and the first one you

should consider, is the person for whom you’re making
your system.

Getting a good location starts with cultural and behavioral
cues. If you want to know where you are, ask another
person near you. In an instant, she’s going to sum up all
kinds of things, like your appearance, your behavior, the
setting you’re both in, the things you’re carrying, and more,
in order to give you a reasonably accurate and contextu-
ally relevant answer. No amount of technology can do that,
because the connection between where we are and why
we want to know is always an abstract thing. As a result,
the best thing you can do when you’re designing a locating
system is to harness the connection-making talents of the
person who will be using that system. Providing him with
cues as to where to position himself when he should take
action, and what actions he can take, helps eliminate the
need for a lot of technology. Asking him to tell your system
where things are, or to position them so that the system
can easily find them, makes for a more effective system.

For example, imagine you’re making an interactive space
that responds to the movements of its viewers. This is
popular among interactive artists, and often they begin
by imagining a “body-as-cursor” project, in which the
viewer is imagined as a body moving around in the space
of the gallery. Some sort of tracking system is needed to
determine his position and report it back in two dimen-
sions, like the position of a cursor on a computer screen.

What’s missing here is the reason why the viewer might be
moving in the first place. If you start by defining what the
viewer’s doing, and give him cues as to what you expect
him to do at each step, you can narrow down the space
in which you need to track him. Perhaps you only need to
know when he’s approaching one of several sculptures in
the space, so that you can trigger the sculpture to move
in response. If you think of the sculptures as nodes in
a network, the task gets easier. Instead of tracking the

MTT_Chp8_F3.indd Sec1:262MTT_Chp8_F3.indd Sec1:262 8/29/07 4:14:11 PM8/29/07 4:14:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 263

viewer in an undefined two-dimensional space, now all you
have to do is to determine his proximity to one of several
points in the room. Instead of building a tracking system,
you can now just place a proximity sensor near each
object and look up which he’s near, and read how near he
is. You’re using a combination of spatial organization and
technology to simplify the task. You can make your job
even easier by giving him visual, auditory, and behavioral
cues to interact appropriately. He’s no longer passive; he’s
now an active participant in the work.

Or take a different example: let’s say you’re designing
a mobile phone city guide application for tourists that
relies on knowing the phone’s position relative to nearby
cell towers to determine the phone’s position. What do
you do when you can’t get a reliable signal from the cell
towers? Perhaps you ask the tourist to input the address
she’s at, or the postal code she’s in, or some other nearby
cue. Then your program can combine that data with
the location based on the last reliable signal it received,
and determine a better result. In these cases, and in all
location-based systems, it’s important to incorporate
human talents in the system to make it better.

!Step 2: Know the Environment
Before you can determine where you are, you need to
determine your environment. For any location, there
are several ways to describe it. For example, you could
describe a street corner in terms of its address, its latitude
and longitude, its postal code, or the businesses nearby.
Which of these coordinates you choose depends in part on
the technology you have on hand to determine it. If you’re
making the mobile city guide described earlier, you might
use several different ones: the nearest cell transmitter ID,
the street address, and the nearby businesses might all
work to define the location. In this case, as in many, your
job in designing the system is to figure out how to relate
one system of coordinates to another in order to give
some meaningful information.

Mapping places to coordinate systems is a lot of work, so
most map databases are incomplete. Geocoding allows
you to look up the latitude and longitude of most any U.S.
street address. It doesn’t work everywhere in the U.S., and
it doesn’t work most places outside the U.S. because the
data hasn’t been gathered and put in the public domain
for everywhere. Geocoding depends on having an accurate
database of names mapped to locations. If you don’t
agree on the names, you’re out of luck. The Virtual Terrain
Project (www.vterrain.org) has a good list of geocoding

resources for the US and international locations at www.
vterrain.org/Culture/geocoding.html. Geocoder.net offers
a free US-based lookup at www.geocoder.net, and Worldkit
offers an extended version that also looks up international
cities, at www.worldkit.org/geocoder.

Street addresses are the most common coordinates that
are mapped to latitude and longitude, but there are other
systems that’d be useful to have physical coordinates
for as well. For example, mobile phone cell transmitters
all have physical locations. It would be handy to have
a database of physical coordinates for those towers.
However, cell towers are privately owned by mobile
telephone carriers, so detailed data about the tower
locations is proprietary, and the data is not in the public
domain. Projects such as CellSpotting (www.cellspotting.
com) attempt to map cell towers by using GPS-equipped
mobile phones running custom software. As there are
many different mobile phone operating systems, even
developing the software to do the job is a huge challenge.
Open source cell geocoding is still in its infancy, so finding
a complete database is difficult.

IP addresses don’t map exactly to physical addresses,
because computers can move. Nevertheless, there are
several geocoding databases for IP addresses. These work
on the assumption that routers don’t move a lot, so if you
know the physical location of a router, then the devices
gaining access to the Net through that router can’t be too
far away. The accuracy of IP geocoding is limited, but it
can help you determine a general area of the world, and
sometimes even a neighborhood or city block, where a
device on the Internet is located. Of course, IP lookup
doesn’t work on private IP addresses. In the next chapter,
you’ll see an example that combines network identity and
geocoding.

You can develop your own database relating physical
locations to cultural or network locations, if the amount of
information you need is small, or you have a large group
of people to do the job. But generally, it’s better to rely on
existing infrastructures when you can.

!Step 3: Acquire and Refine
Once you know where you’re going to look, there are
two tasks that you have to do continually: acquire a new
position, and refine the position’s accuracy. Acquisition
gives a rough position. Acquisition usually starts by iden-
tifying which device on a network is the center of activity.
In the interactive installation example described earlier,

MTT_Chp8_F3.indd Sec1:263MTT_Chp8_F3.indd Sec1:263 8/29/07 4:14:30 PM8/29/07 4:14:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

264 MAKING THINGS TALK

At the 2004 O’Reilly Emerging Technology Conference,

Interaction designer and writer Chris Heathcote gave

an excellent presentation on cultural and technological

solutions to finding things entitled 35 Ways to Find Your

Location. He outlined a number of important factors

to keep in mind before you choose tools to do the job.

He pointed out that the best way to locate someone

or something involves a combination of technological

methods and interpretation of cultural and behavioral

cues. His list is a handy tool for inspiring solutions when

you need to develop a system to find locations. A few of

the more popular techniques that Chris listed are:

• Assume: the Earth. Or a smaller domain, but assume
that's the largest space you have to look in.

• Use the time.

• Ask someone.

• Association: who or what are you near?

• Proximity to phone boxes, public transport stops,
and utility markings.

• Use a map.

• Which cell phone operators are available?

Public phone operators?

• Phone number syntax?

• Newspapers available?

• Language being spoken?

• Post codes/ZIP codes

• Street names.

• Street corners/intersections.

• Street numbers.

• Business names.

• Mobile phone location, through triangulation or
trilateration.

• Triangulation and trilateration on other radio
infrastructures, like TV, radio, and public Wi-Fi.

• GPS, assisted GPS, WAAS, and other GPS
enhancements.

• Landmarks and “littlemarks.”

• Dead reckoning.

35 Ways to Find
Your Location

you could acquire a new position by determining that the
viewer tripped a sensor near one of the objects in the
room. Once you know roughly where he is, you can refine
the position by measuring his distance with the proximity
sensor attached to the object.

Refining doesn’t have to mean getting a more accurate
physical position. When you have a rough idea of where
something’s happening, you need to know about the
activity at that location in order to provide a response. In
the interactive installation example, you may never need to
know the viewer’s physical coordinates in feet and inches
(or meters and centimeters). When you know which object
he’s close to in the room, and whether he’s close enough
to relate to it, you can make that object respond. You
might be changing the graphics on an LCD display when
he walks close to it, or activating an animatronic sculpture
as he walks by. In both cases, you don’t need to know the
precise distance; you just need to know he’s close enough
to pay attention. Sometimes distance ranging sensors
are used as motion detectors to define general zones of
activity rather than to measure distance.

Determining proximity doesn’t always give you enough
information to take action. Refining can also involve deter-
mining the orientation of one object relative to another. If
you’re giving directions from one location to another, you
need to know which way you’re oriented. It’s also valuable
information when two people or objects are close to each
other. You don’t want to activate the animatronic sculpture
if the viewer has his back to the thing!
X

MTT_Chp8_F3.indd Sec1:264MTT_Chp8_F3.indd Sec1:264 8/29/07 4:14:52 PM8/29/07 4:14:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 265

Determining Distance
Electronic locating systems like GPS, mobile phone location, and sonar seem magical at
first, because there’s no visible evidence as to how they work. When you break the job
down into its components, it becomes relatively straightforward. Most physical location
systems are based on the same principle. They determine distance from several known
and fixed locations by measuring the energy of an electromagnetic or acoustic wave
coming from the object to be located. Then they combine those measurements to
determine a position in two or three dimensions.

For example, a GPS receiver determines its position on
the surface of the planet by measuring the strength of
received radio signals from several geosynchronous satel-
lites. Similarly, mobile phone location systems measure
the signal strength of the phone at several cell towers.
Sonar and infrared ranging sensors work by sending out
an acoustic signal (sonar) or an infrared signal (IR rangers)
and measuring the strength of that signal when it’s
reflected off the target.

Distance ranging techniques can be classified as active
or passive. In active systems, the target has a radio, light,
or acoustic source on it, and the receiver just listens
for the signal from the target. In passive systems, the

target doesn’t have to have any technology on board. The
receiver emits a signal, and the signal bounces off the
target. Mobile phone location is active, because it relies on
the phone sending out a radio signal. Sonar and infrared
ranging are passive, because the sensor has to emit a
signal in order to measure the reflection. GPS is an active
locating technology, because although the receiver doesn’t
emit a signal, it has an electronic receiver onboard to
receive satellites’ signals.

Sometimes distance ranging is used for acquiring a
position, and other times it’s used for refining it. In the
following examples, the passive distance rangers deliver a
measurement of physical distance, but the radio ranging
tell you only when another radio is in transmission range of
your radio, and whether it’s near or far within the range.

Passive Distance Ranging
Ultrasonic rangers like the Devantech SRF02 and infrared
rangers like the Sharp GP2D12, shown in Figure 8-1, are
examples of distance rangers. The Devantech sensor
sends an ultrasonic signal out and listens for an echo;
it’s basically a sonar device. The Sharp sensor sends
out an infrared light beam, and senses the reflection of
that beam. These sensors only work in a short range.
The Sharp sensor can read about 10 cm to 80 cm, and
the Devantech sensor reads from about 15 cm to 6.4 m;
these are useful only for very local measurements. Passive
sensors like these are handy, though, when you want to
measure the distance of a person in a limited space, and
you don’t want to have to put any hardware on the person.
They’re also handy when you’re building moving objects
that need to know their proximity to other objects in the
same space as they move.

Figure 8-1
Devantech SRF02 and Sharp GP2D12 sensors. The Devantech
sensor can read a range from 15 cm to 6 m. The Sharp sensor can
read a range from 10 cm to 80cm.

MTT_Chp8_F3.indd Sec1:265MTT_Chp8_F3.indd Sec1:265 8/29/07 4:15:27 PM8/29/07 4:15:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

266 MAKING THINGS TALK

The Sharp GP2xx series of infrared
ranging sensors give a decent measure-
ment of short-range distance by bouncing
an infrared light signal off the target
and measuring the returned brightness.
They’re very simple to use. Shown in
Figure 8-2 is a circuit for a Sharp GP2D12
IR ranger, which can detect an object in
front of it within about 10 cm to 80 cm.
The sensor requires 5V power, and outputs
an analog voltage from 0 to 5V, depending
on the distance to the nearest object in its
sensing area.

MATERIALS

1 solderless breadboard such as Digi-Key
(www.digikey.com) part number 438-1045-ND, or
Jameco (www.jameco.com) part number 20601.
The breadboard is optional; as shown in the photo,
you can assemble this without it.
1 Arduino module or other microcontroller
1 Sharp GP2D12 IR ranger Acroname (www.
acroname.com) part number R48-IR12; SparkFun
(www.sparkfun.com) part number SEN-00242 for
the Sharp GP2Y0A21YK, a similar model; Trossen
Robotics (www.trossenrobotics.com) part number
S-10-GP2D12; Digi-Key part number 425-2469-ND.
It’s best to buy the connector and cable needed with
the sensor, as they are difficult to make. Acroname
sells these as part number R47-JSTCON-2, Trossen
Robotics as part number S-10-GP2D12C.
1 10µF capacitor

»

»
»

»

Infrared Distance Ranger Example

The Sharp sensors’ outputs are
not linear, so if you want to get a linear
range, you need to make a graph of the
voltage over distance, and do some
math. Fortunately, the good folks at
Acroname Robotics have done the
math for you. For the details, see www.
acroname.com/robotics/info/articles/
irlinear/irlinear.html.

The next program reads the sensor
and outputs the distance measured in
centimeters. The conversion formula
gives only an approximation, but it’s
accurate enough for general purposes.

8 /*

 Sharp GP2D12 IR ranger reader

 language: Wiring/Arduino

 Reads the value from a Sharp GP2D12 IR ranger and sends it

 out serially.

*/

int sensorPin = 0; // Analog input pin

int sensorValue = 0; // value read from the pot

void setup() {

 // initialize serial communications at 9600 bps:

 Serial.begin(9600);

}

void loop() {

 sensorValue = analogRead(sensorPin); // read the pot value

 // the sensor actually gives results that aren't linear.

 // this formula converts the results to a linear range.

 int range = (6787 / (sensorValue - 3)) - 4;

 Serial.println(range, DEC); // print the sensor value

 delay(10); // wait 10 milliseconds

 // before the next loop

}

Project 14

MTT_Chapter8.indd Sec1:266MTT_Chapter8.indd Sec1:266 8/31/07 1:16:12 PM8/31/07 1:16:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 267

Figure 8-2
The Sharp GP2D12 IR ranger attached
to a microcontroller. The capacitor
attached to the body of the sensor
smoothes out fluctuations due to the
sensor’s current load.

MTT_Chp8_F3.indd Sec1:267MTT_Chp8_F3.indd Sec1:267 8/29/07 4:16:15 PM8/29/07 4:16:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

268 MAKING THINGS TALK

The Devantech SRFxx ultrasonic sensors
measure distance using a similar method
to the Sharp sensors, but have a greater
sensing range. They send an ultrasonic
signal out and wait for the echo to return,
and measure the distance based on the
time required for the echo to return. These
sensors require 5V power, and return
their results via an I2C synchronous serial
protocol. The SRF02 sensors and other
SRFxx sensors like the SRF08 and SRF10,
which use the same protocol, are available
from the sites www.acroname.com and
robot-electronics.co.uk. The MaxBotix
EZ1 and LV-EZ1 (available from www.
sparkfun.com) are ultrasonic rangers that
are similar to the Devantech ones, but
that use TTL serial, pulsewidth output, or
analog voltage output instead of I2C.

MATERIALS

1 solderless breadboard such as Digi-Key
part number 438-1045-ND, or Jameco part
number 20601
1 Arduino module or other microcontroller
1 Devantech SRF02 ultrasonic ranger
Acroname Robotics part number R287-SRF02
1 100µF capacitor SparkFun part number
COM-00096, or Digi-Key part number P10195-ND

»

»
»

»

Ultrasonic Distance Ranger Example
I2C is comparable to RS-232 or USB, in that it doesn’t
define the application — just the way that data is sent.
Every I2C device uses two wires to send and receive data:
a serial clock pin, called the SCL pin, that the microcon-
troller pulses at a regular interval, and a serial data pin,
called the SDA pin, over which data is transmitted. For
each serial clock pulse, a bit of data is sent or received.
When the clock changes from low to high (known as the
rising edge of the clock), a bit of data is transferred from
the microcontroller to the I2C device. When the clock
changes from high to low (known as the falling edge of the
clock), a bit of data is transferred from the I2C device to
the microcontroller.

The Arduino module uses analog pin 4 as the SDA pin, and
analog pin 5 as the SCL pin. Figure 8-3 shows the SRF02
sensor connected to an Arduino.

Distance rangers have a limited conical field of sensitiv-
ity, so they’re not great for determining location over a
large two-dimensional area. The Devantech SRF02 sensor,
for example, has a cone-shaped field of sensitivity that’s
about 55 degrees wide and 6 meters from the sensor to
the edge of the range. In order to use it to cover a room,
you’d need to use several of them and get creative about
how you arrange them. Figure 8-4 shows one way to cover
a 4m x 4m space using five of the SRF02 rangers. In this
case, you’d need to make sure that no two of the sensors
were operating at the same instant, because their signals
would interfere with each other. The sensors would have to
be activated one after another in sequence. Because each
one takes up to 36 milliseconds to return a result, you’d
need up to 180 milliseconds to make a complete scan of
the space.

Project 15

MTT_Chp8_F3.indd Sec1:268MTT_Chp8_F3.indd Sec1:268 8/29/07 4:16:48 PM8/29/07 4:16:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 269

Figure 8-3
SRF02 ultrasonic sensor connected
to an an Arduino Mini 04 module.
Female headers have been soldered
to the Arduino Mini’s analog 4-7 holes
to make them easier to use.

Sensor

» Bottom right

Figure 8-4
Measuring distance in two dimen-
sions using ultrasonic distance
rangers. The square in each drawing
is a 4m × 4m floor plan of a room.
In order to cover the whole of a
rectangular space, you need several
sensors placed around the side of
the room.

MTT_Chp8_F3.indd Sec1:269MTT_Chp8_F3.indd Sec1:269 8/29/07 4:17:08 PM8/29/07 4:17:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

270 MAKING THINGS TALK

»

/*

 SRF02 sensor reader

 language: Wiring/Arduino

 Reads data from a Devantech SRF02 ultrasonic sensor.

 Should also work for the SRF08 and SRF10 sensors as well.

 Sensor connections:

 SDA - Analog pin 4

 SCL - Analog pin 5

 */

// include Wire library to read and write I2C commands:

#include <Wire.h>

// the commands needed for the SRF sensors:

#define sensorAddress 0x70

#define readInches 0x50

// use these as alternatives if you want centimeters or microseconds:

#define readCentimeters 0x51

#define readMicroseconds 0x52

// this is the memory register in the sensor that contains the result:

#define resultRegister 0x02

void setup()

{

 // start the I2C bus

 Wire.begin();

 // open the serial port:

 Serial.begin(9600);

}

void loop()

{

 // send the command to read the result in inches:

 sendCommand(sensorAddress, readInches);

 // wait at least 70 milliseconds for a result:

 delay(70);

 // set the register that you want to read the result from:

 setRegister(sensorAddress, resultRegister);

 // read the result:

 int sensorReading = readData(sensorAddress, 2);

 // print it:

 Serial.print("distance: ");

 Serial.print(sensorReading);

 Serial.println(" inches");

 // wait before next reading:

 delay(70);

}

This sketch sends
commands to the SRF02

sensor to take distance readings and
return them to the microcontroller.

NOTE: If you have trouble compiling this

sketch, you might need to delete the

compiled version of the Wire library, and

let Arduino recompile it the next time you

compile your program. The file you need to

delete is called Wire.o, and it’s in a subdirec-

tory of the Arduino application directory:

lib/targets/libraries/Wire/. In general, for

any library you want to recompile, you

can delete the object file (the .o file), and

Arduino will recompile it.

 Try It

»

MTT_Chp8_F3.indd Sec1:270MTT_Chp8_F3.indd Sec1:270 8/29/07 4:17:59 PM8/29/07 4:17:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 271

Continued from opposite page.

/*

 SendCommand() sends commands in the format that the SRF sensors expect

 */

void sendCommand (int address, int command) {

 // start I2C transmission:

 Wire.beginTransmission(address);

 // send command:

 Wire.send(0x00);

 Wire.send(command);

 // end I2C transmission:

 Wire.endTransmission();

}

/*

 setRegister() tells the SRF sensor to change the address

 pointer position

 */

void setRegister(int address, int thisRegister) {

 // start I2C transmission:

 Wire.beginTransmission(address);

 // send address to read from:

 Wire.send(thisRegister);

 // end I2C transmission:

 Wire.endTransmission();

}

/*

readData() returns a result from the SRF sensor

 */

int readData(int address, int numBytes) {

 int result = 0; // the result is two bytes long

 // send I2C request for data:

 Wire.requestFrom(address, numBytes);

 // wait for two bytes to return:

 while (Wire.available() < 2) {

 // wait for result

 }

 // read the two bytes, and combine them into one int:

 result = Wire.receive() * 256;

 result = result + Wire.receive();

 // return the result:

 return result;

}

MTT_Chp8_F3.indd Sec1:271MTT_Chp8_F3.indd Sec1:271 8/29/07 4:18:19 PM8/29/07 4:18:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

272 MAKING THINGS TALK

Active Distance Ranging
The ultrasonic and infrared rangers in the

preceding sections are passive distance sensing systems.
Mobile phones and the Global Positioning System measure
longer distances by using ranging as well. These systems
include a radio beacon (the cell tower or GPS satellite) and
a radio receiver (the phone or GPS receiver). The receiver
determines its distance from the beacon based on the
received signal from the beacon. These systems can
measure much greater distances, on an urban or global
scale. The disadvantage of active distance ranging is that
you must have both a sending device and receiving device.
You can’t measure a person’s distance from somewhere
using active distance ranging unless you attach a receiver
to the person.

GPS and cellular location systems don’t actually give you
the distance from their radio beacons, just the relative
signal strength of the radio signal. Bluetooth, 802.15.4,

ZigBee, and Wi-Fi radios all provide data about signal
strength as well. In order to relate this to distance, you
need to be able to calculate that distance as a function of
signal strength. The main function of a GPS receiver is to
calculate distances to the GPS satellites based on signal
strength and determine a position using those distances.
The other radio systems mentioned here don’t do those
calculations for you.

In many applications, though, you don’t need to know the
distance — you just need to know how relatively near or far
one person or object is to another. For example, if you’re
making a pet door lock that opens in response to the pet,
you could imagine a Bluetooth beacon on the pet’s collar,
and a receiver on the door lock. When the signal strength
from the pet’s collar is strong enough, the door lock opens.
In this case, and in others like it, there’s no need to know
the actual distance.
X

Active distance ranging

Initial signal generated by
base unit(e.g. cell tower)

Response signal generated by
mobile unit (e.g. cell phone).

Passive distance ranging

Base unit (sensor) sends out
signal, reads reflection from

mobile object or person

MTT_Chapter8.indd Sec1:272MTT_Chapter8.indd Sec1:272 8/31/07 1:13:04 PM8/31/07 1:13:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 273

In the last chapter, you saw the received signal strength, but you didn’t do anything with
it. The Processing code that read the solar cell’s voltage output parsed the XBee packet
for the received signal strength (RSSI). Here’s a simpler variation on it that just reads
the signal strength. To test it, you can use the same radio settings from the solar cell
project and attach the receiving XBee radio to a USB-to-serial adaptor. See Figure 7-5
for the receiving circuit, and Figure 7-6 (the VOC sensor circuit) or Figure 7-18 (the solar
cell circuit) for circuits that work well as transmitters.

Reading Received Signal Strength Using XBee Radios

Run this Processing sketch to
connect to the receiver radio via the
USB-to-serial device. When you run this
program, you’ll get a graphing bar like
that in Figure 8-5.

8 /* XBee Signal Strength Reader

 Language: Processing

 Reads a packet from an XBee radio and parses it. The packet

 should be 22 bytes long. It should be made up of the following:

 byte 1: 0x7E, the start byte value

 byte 2-3: packet size, a 2-byte value (not used here)

 byte 4: API identifier value, a code that says what this response

 is (not used here)

 byte 5-6: Sender's address

 byte 7: RSSI, Received Signal Strength Indicator (not used here)

 byte 8: Broadcast options (not used here)

 byte 9: Number of samples to follow

 byte 10-11: Active channels indicator (not used here)

 byte 12-21: 5 10-bit values, each ADC samples from the sender

*/

import processing.serial.*;

Serial XBee ; // input serial port from the XBee Radio

int[] packet = new int[22]; // with 5 samples, the XBee packet is

 // 22 bytes long

int byteCounter; // keeps track of where you are in

 // the packet

int rssi = 0; // received signal strength

int address = 0; // the sending XBee 's address

Serial myPort; // The serial port

int fontSize = 18; // size of the text on the screen

int lastReading = 0; // value of the previous incoming byte

void setup () {

 size(400, 300); // window size

»

Project 16

MTT_Chp8_F3.indd Sec1:273MTT_Chp8_F3.indd Sec1:273 8/29/07 4:19:08 PM8/29/07 4:19:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

274 MAKING THINGS TALK

Continued from previous page.

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], fontSize);

 textFont(myFont);

 // get a list of the serial ports:

 println(Serial.list());

 // open the serial port attached to your XBee radio:

 XBee = new Serial(this, Serial.list()[0], 9600);

}

void draw() {

 // if you have new data and it's valid (>0), graph it:

 if ((rssi > 0) && (rssi != lastReading)) {

 // set the background:

 background(0);

 // set the bar height and width:

 int rectHeight = rssi;

 int rectWidth = 50;

 // draw the rect:

 stroke(23, 127, 255);

 fill (23, 127, 255);

 rect(width/2 - rectWidth, height-rectHeight, rectWidth, height);

 // write the number:

 text("XBee Radio Signal Strength test", 10, 20);

 text("From: " + hex(address), 10, 40);

 text ("RSSI: -" + rssi + " dBm", 10, 60);

 // save the current byte for next read:

 lastReading = rssi;

 }

}

void serialEvent(Serial XBee) {

 // read a byte from the port:

 int thisByte = XBee .read();

 // if the byte = 0x7E, the value of a start byte, you have

 // a new packet:

 if (thisByte == 0x7E) { // start byte

 // parse the previous packet if there's data:

 if (packet[2] > 0) {

 parseData(packet);

 }

 // reset the byte counter:

 byteCounter = 0;

 }

 // put the current byte into the packet at the current position:

 packet[byteCounter] = thisByte;

 // increment the byte counter:

 byteCounter++;

} »

MTT_Chp8_F3.indd Sec1:274MTT_Chp8_F3.indd Sec1:274 8/29/07 4:19:27 PM8/29/07 4:19:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 275

Continued from opposite page.

/*

 Once you've got a packet, you need to extract the useful data.

 This method gets the address of the sender and RSSI.

 */

void parseData(int[] thisPacket) {

 // read the address -- a two-byte value, so you

 // add the two bytes as follows:

 address = thisPacket[5] + thisPacket[4] * 256;

 // get RSSI:

 rssi = thisPacket[6];

}

Radio signal strength is measured in decibel-
milliwatts (dBm). You might wonder why the

signal reads –65dBm. How can the signal strength be
negative? The relationship between milliwatts of power
and dBm is logarithmic. To get the dBm, take the log of
the milliwatts. So, for example, if you receive 1 milliwatt of
signal strength, you’ve got log 1 dBm. Log 1 = 0, so 1 mW =
0 dBm. When the power drops below 1 mW, the dBm drops
below 0, like so: 0.5 mW = (log 0.5) dBm or –3.01 dBm.
0.25mW = (log 0.25) dBm, or –6.02 dBm. If logarithms
confuse you, just remember that 0 dBm is the maximum
transmission power, which means that signal strength
is going to start at 0 dBm and go down from there. The
minimum signal that the XBee radios can receive is –92
dBm. Bluetooth radios and Wi-Fi radios typically have
a similar range of sensitivity. In a perfect world with no
obstructions to create errors, relationship between signal
strength and distance would be a logarithmic curve.

Figure 8-5
Output of the XBee RSSI test program.

MTT_Chp8_F3.indd Sec1:275MTT_Chp8_F3.indd Sec1:275 8/29/07 4:19:45 PM8/29/07 4:19:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

276 MAKING THINGS TALK

The BlueRadios modules used in Chapters 2 and 6 can also give you an RSSI reading.
To see this, the radio needs to be connected to another Bluetooth radio. The simplest
way to see this is to pair your radio with your laptop as shown in Project #3 in Chapter 2.

Reading Received Signal Strength
Using Bluetooth Radios

Figure 8-6
Multipath. Reflected radio waves create phantom beacons that
the receiver can’t tell from the real beacon, causing errors in
calculating the distance based on signal strength.

Once you’ve done this, open a serial connection to the
radio via Bluetooth, not via the radio’s hardware serial
interface. Once you’re connected, drop out of data mode
into command mode by typing the following (\r indicates
that you should type a carriage return; press Enter or
Return when you see \r):

+++AT\r

You’ll get an OK prompt from the radio. Next type:

ATRSSI\r

Project 17

The radio will respond like so:

OK

+0.6

As you move the radio closer to or further from your
computer, type the ATRSSI command again. You’ll see
the signal strength change just as it did in the XBee
example in the preceding project.

The Multipath Effect
The biggest source of error in distance ranging is what’s
called the multipath effect (see Figure 8-6). When elec-
tromagnetic waves radiate, they bounce off things. Your
phone may receive multiple signals from a nearby cell
tower if you’re positioned near a large obstacle such as
a building. The reflected waves off the building create
“phantom” signals that look to the receiver as real as
the original signal. This issue makes it impossible for
the receiver to calculate the distance from the beacon
accurately and causes degradation in the signal quality of
mobile phone reception, as well as errors in locating the
phones. For GPS receivers, multipath results in a much
wider range of possible locations, as the error means that
you can’t calculate the position as accurately. It is possible
to filter for the reflected signals, but not all radios incorpo-
rate such filtering.

MTT_Chp8_F3.indd Sec1:276MTT_Chp8_F3.indd Sec1:276 8/29/07 4:20:07 PM8/29/07 4:20:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 277

In order to locate it within a two- or three-dimensional
space, though, you need to know more than distance. The
most common way to do this is by measuring the distance
from at least three points. This method is called trilatera-
tion. If you measure the object’s distance from two points,
you get two possible places it could be on a plane, as
shown in Figure 8-7. When you add a third circle, you have
one distinct point on the plane where your object could
be. A similar method, triangulation, uses two known points
and calculates the position using the distance between the
two known points and the angles of the triangle formed by
those points and the position you want to know.

Determining Position Through Trilateration
Distance ranging tells you how far away an object is from your measuring point in one
dimension, but it doesn’t define the whole position. The distance between your position
and the target object determines a circle around your position (or a sphere, if you’re
measuring in three dimensions). Your object could be anywhere on that circle.

Figure 8-7
Trilateration on a two-dimensional plane. Knowing the distance from
one point defines a circle of possible locations. Knowing the distance
from two points narrows it to two possible points. Knowing the
distance from three points determines a single point on the plane.

The Global Positioning System uses trilateration to determine
an object’s position. GPS uses a network of geosynchronous
satellites circling the globe. The position of each satellite can
be calculated at any given moment. Each one is broadcast-
ing its position, and GPS receivers pick up that broadcast.
When a receiver has at least three satellites, it can deter-
mine a rough position. Most receivers use at least six satellite
signals to calculate their position, in order to correct any
errors. Cell phone location systems like Wireless E911
calculate a phone’s approximate position in a similar fashion,
by measuring the distance from multiple cell towers based
on the time difference of arrival of signals from those towers.

MTT_Chp8_F3.indd Sec1:277MTT_Chp8_F3.indd Sec1:277 8/29/07 4:20:29 PM8/29/07 4:20:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

278 MAKING THINGS TALK

The good news is that if you’re using GPS,
you never have to do trilateration or triangu-
lation calculations for yourself. GPS receivers
do the work for you. They then give you the
position in terms of latitude and longitude.
There are several data protocols for GPS
receivers, but the most widely used is the
NMEA 0183 protocol established by the
National Marine Electronics Association in
the United States. Just about all receivers
on the market output NMEA 0183, and
usually one or two other protocols as well.

MATERIALS

1 solderless breadboard such as Digi-Key
part number 438-1045-ND, or Jameco part
number 20601
1 GPS receiver module SparkFun part number
GPS-00465 or Parallax (www.parallax.com) part
number 28146 (the Parallax module, developed
by Grand Design Studio, comes mounted on a
breadboard-ready breakout board)
1 BlueSMiRF Bluetooth Modem module
from SparkFun
1 5V voltage regulator Digi-Key part number
LM7805CT-ND; Jameco part number 51262;
SparkFun part number COM-00107

»

»

»

»

Reading the GPS Serial Protocol

$GPGGA,155123.000,4043.8432,N,07359.7653,W,1,05,1.7,49.7,M,-34.2,M,,0000*5F

$GPGSA,A,3,10,24,29,02,26,,,,,,,,6.2,1.7,6.0*3C

$GPGSV,3,1,12,10,62,038,38,29,57,160,38,24,52,311,32,06,52,273,29*77

$GPGSV,3,2,12,26,43,175,39,02,40,106,38,07,40,294,36,15,30,301,*77

$GPGSV,3,3,12,21,14,298,,08,10,078,,27,10,051,,04,04,112,*7B

$GPRMC,155123.000,A,4043.8432,N,07359.7653,W,0.15,83.25,200407,,*28

$GPGGA,155124.000,4043.8432,N,07359.7653,W,1,05,1.7,49.8,M,-34.2,M,,0000*57

$GPGSA,A,3,10,24,29,02,26,,,,,,,,6.2,1.7,6.0*3C

$GPRMC,155124.000,A,4043.8432,N,07359.7653,W,0.15,79.50,200407,,*28

$GPGGA,155125.000,4043.8432,N,07359.7654,W,1,05,1.7,49.7,M,-34.2,M,,0000*5E

$GPGSA,A,3,10,24,29,02,26,,,,,,,,6.2,1.7,6.0*3C

$GPRMC,155125.000,A,4043.8432,N,07359.7654,W,0.10,11.88,200407,,*20

NMEA 0183 is a serial protocol that operates at 4800
bits per second, 8 data bits, no parity, 1 stop bit (4800-8-
N-1). Most receivers send this data using either RS-232
or TTL serial levels. The receiver used for this example,
an EM-406A SiRF III receiver available from SparkFun,
sends NMEA data at 5V TTL levels. Figure 8-8 shows the
module connected to BlueSMiRF radio, for testing. The
data is sent back over Bluetooth to a personal computer
running Processing. You can pair the BlueSMiRF to your
personal computer using the instructions from Project #2
in Chapter 2, if it’s not already paired.

Once your personal computer recognizes the Bluetooth
radio, open a serial connection to it at 9600 bits per
second. You’re opening a serial connection over Bluetooth,
not over USB as you’ve done with most of the projects
in this book. The GPS module operates at 4800 bits
per second, so you need to reset the Bluetooth radio’s
serial data rate in order to get data from the GPS module
through it. If you do see any data, it’ll be illegible, because
the radio’s serial connection to the GPS module is set to
9600 bps, and the GPS module’s sending at 4800 bps.
To change this, type: +++\r This command takes the radio
out of data mode and puts it in command mode. The radio
will respond: OK

Next, type:

ATSW20,20,0,0,1\r

ATMD\r

After that, you should see
data in the NMEA protocol, like what you see here, below:

This changes the data rate

to 4800 bits per second

8

This puts the radio back

into data mode.

8

Project 18

MTT_Chp8_F3.indd Sec1:278MTT_Chp8_F3.indd Sec1:278 8/29/07 4:21:03 PM8/29/07 4:21:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 279

Figure 8-8
EM-406A GPS receiver attached to a Bluetooth
radio. In order to get a real GPS signal, you’ll
have to go outside, so wireless data and a battery
power source are handy.

There are several different types of sentences within the
NMEA protocol. Each sentence serves a different function.
Some tell you your position, some tell you about the satel-
lites in view of the receiver, some deliver information about
your course heading, and so on. Each sentence begins

with a dollar sign ($) followed by five letters that identify
the type of sentence. After that come each of the param-
eters of the sentence, separated by commas. An asterisk
comes after the parameters, then a checksum, then a
carriage return and a linefeed.

MTT_Chp8_F3.indd Sec1:279MTT_Chp8_F3.indd Sec1:279 8/29/07 4:21:23 PM8/29/07 4:21:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

280 MAKING THINGS TALK

Take a look at the $GPRMC
sentence as an example:

8 $GPRMC,155125.000,A,4043.8432,N,07359.7654,W,0.10,11.88,200407,,*20

Message identifier $GPRMC

Time 155125.000 or 15:51:25 GMT

Status of the data (valid or not valid) A = valid data (V = not valid)

Latitude 4043.8432 or 40°43.8432'

North/South Indicator N = North (S = South)

Longitude 07359.7654 or 73°59.7654'

East/West indicator W = West (E = East)

Speed over ground 0.10 knots

Course over ground 11.88° from north

Date 200407 or April 20, 2007

Magnetic Variation none

Mode none

Checksum (there is no comma before the
checksum; magnetic variation would appear to
the left of that final comma, and mode would
appear to the right)

*20

NOTE: Extra credit: Figure out where I was

when I wrote this chapter. Figure 8-9
The output of the Processing
GPS parser.

RMC stands for Recommended
Minimum specifiC global navigation
system satellite data. It gives the basic
information almost any application
might need. This sentence contains the
information shown in the table.

Using the NMEA protocol in a program
is just a matter of deciding which
sentence gives you the information you
need, reading the data in serially, and
converting the data into values you can
use. In most cases, the RMC sentence
gives you all the data you need about
position.

The Processing sketch shown next
reads NMEA serial data in and parses
out the time, date, latitude, longitude,
and heading. It draws an arrow on the
screen to indicate heading. The output
looks like Figure 8-9. (Be sure to use
the correct serial port when opening
myPort; you may need to modify the
code before you can run it.)

MTT_Chp8_F3.indd Sec1:280MTT_Chp8_F3.indd Sec1:280 8/29/07 4:21:52 PM8/29/07 4:21:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 281

First, set up your global
variables as usual:

The setup() method sets the
window size, defines the font and the
drawing parameters, and opens the
serial port.

8

 Find It /*

 GPS parser

 language: Processing

 This program takes in NMEA 0183 serial data and

 parses out the date, time, latitude, and longitude

 using the GPRMC sentence.

*/

// import the serial library:

import processing.serial.*;

Serial myPort; // the serial port

float latitude = 0.0; // the latitude reading in degrees

String northSouth; // north or south?

float longitude = 0.0; // the longitude reading in degrees

String eastWest; // east or west?

float heading = 0.0; // the heading in degrees

int hrs, mins, secs; // time units

int thisDay, thisMonth, thisYear;

void setup() {

 size(300, 300); // window size

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 14);

 textFont(myFont);

 // settings for drawing arrow:

 noStroke();

 smooth();

 // list all the available serial ports:

 println(Serial.list());

 // I know that the first port in the serial list on my mac

 // is always my Keyspan adaptor, so I open Serial.list()[0].

 // Open whatever port you're using.

 myPort = new Serial(this, Serial.list()[0], 4800);

 // read bytes into a buffer until you get a carriage

 // return (ASCII 13):

 myPort.bufferUntil('\r');

}

MTT_Chp8_F3.indd Sec1:281MTT_Chp8_F3.indd Sec1:281 8/29/07 4:22:16 PM8/29/07 4:22:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

282 MAKING THINGS TALK

»

void getRMC(String[] data) {

 // move the items from the string into the variables:

 int time = int(data[1]);

 // first two digits of the time are hours:

 hrs = time/10000;

 // second two digits of the time are minutes:

 mins = (time%10000)/100;

 // last two digits of the time are seconds:

 secs = (time%100);

The serialEvent() method gets any
incoming data as usual, and passes it
off to a method called parseString().
That method splits the incoming string
into all the parts of the GPS sentence.
If it’s a GPRMC sentence, it passes it to
a method, getRMC() to handle it. If you
were writing a more universal parser,
you’d write similar methods for each
type of sentence.

8

The getRMC() method converts
the latitude, longitude, and other
numerical parts of the sentence into
numbers.

8

The draw() method prints the
readings in the window, and calls
another method, drawArrow() to draw
the arrow and circle.

8 void draw() {

 background(0);

 // make the text white:

 fill(255);

 // print the date and time from the GPS sentence:

 text(thisMonth+ "/"+ thisDay+ "/"+ thisYear , 50, 30);

 text(hrs+ ":"+ mins+ ":"+ secs + " GMT ", 50, 50);

 // print the position from the GPS sentence:

 text(latitude + " " + northSouth + ", " +longitude +" "+ eastWest,

 50, 70);

 text("heading " + heading + " degrees", 50,90);

 // draw an arrow using the heading:

 drawArrow(heading);

}

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // if you got any bytes other than the linefeed, parse it:

 if (myString != null) {

 parseString(myString);

 }

}

void parseString (String serialString) {

 // split the string at the commas:

 String items[] = (split(serialString, ','));

 // if the first item in the sentence is the identifier, parse the rest

 if (items[0].equals("$GPRMC")) {

 // get time, date, position, course, and speed

 getRMC(items);

 }

}

MTT_Chp8_F3.indd Sec1:282MTT_Chp8_F3.indd Sec1:282 8/29/07 4:22:37 PM8/29/07 4:22:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 283

Continued from opposite page.

 // if you have a valid reading, parse the rest of it:

 if (data[2].equals("A")) {

 latitude = float(data[3])/100.0;

 northSouth = data[4];

 longitude = float(data[5])/100.0;

 eastWest = data[6];

 heading = float(data[8]);

 int date = int(data[9]);

 // last two digits of the date are year. Add the century too:

 thisYear = date%100 + 2000;

 // second two digits of the date are month:

 thisMonth = (date%10000)/100;

 // first two digits of the date are day:

 thisDay = date/10000;

 }

}

drawArrow() is called by the
draw() method. It draws the arrow
and the circle.

8 void drawArrow(float angle) {

 // move whatever you draw next so that (0,0) is centered on the screen:

 translate(width/2, height/2);

 // draw a circle in light blue:

 fill(80,200,230);

 ellipse(0,0,50,50);

 // make the arrow black:

 fill(0);

 // rotate using the heading:

 rotate(radians(angle));

 // draw the arrow. center of the arrow is at (0,0):

 triangle(-10, 0, 0, -20, 10, 0);

 rect(-2,0, 4,20);

}

MTT_Chp8_F3.indd Sec1:283MTT_Chp8_F3.indd Sec1:283 8/29/07 4:22:57 PM8/29/07 4:22:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

284 MAKING THINGS TALK

Calculating heading can be done using a
compass if you are in a space that doesn’t
have a lot of magnetic interference. There
are many digital compasses on the market.
These acquire a heading by measuring the
change in the earth’s magnetic field along
two axes, just as an analog compass does.
Like analog compasses, they are subject
to interference from other magnetic fields,
including those generated by strong elec-
trical induction.

MATERIALS

1 solderless breadboard such as Digi-Key part
number 438-1045-ND, or Jameco part number
20601
1 Arduino module or other microcontroller
2 4.7kΩ resistors
1 digital compass, Devantech model CMPS03
available from Acroname Robotics, part number
R117-COMPASS, or Robot Electronics CMPS03

»

»
»
»

Determining Heading Using a Digital Compass
This example uses a digital compass from Devantech,
model CMPS03. It’s available from www.acroname.
com, and www.robot-electronics.co.uk. It measures its
orientation using two magnetic field sensors placed at
right angles to each other, and reports the results via two
interfaces: a changing pulse width corresponding to the
heading, or synchronous serial data sent over an I2C con-
nection. You’ll recognize some of the I2C methods used
here from the SRF02 distance ranger example shown
earlier. Both are made by the same company, and both use
similar protocols.

The interface to the microcontroller is similar to that of the
distance ranger. The Arduino module uses analog pin 4 as
the SDA pin, and analog pin 5 as the SCL pin. Figure 8-10
shows the compass connected to an Arduino.

The compass operates on 5V. Its pins are as follows:

1. +5V
2. SCL – I2C serial clock
3. SDA – I2C serial data
4. PWM – Pulsewidth output. Pulsewidth is from

1 millisecond to 36.99 milliseconds, and each degree of
compass heading is 100 microseconds of pulsewidth.

5. No connection.
6. Calibrate.
7. 50/60Hz select — Take this pin high or leave

unconnected for 60Hz operation, take it low for 50Hz.
8. No connection
9. Ground

Determining Orientation
People have an innate ability to determine their orientation relative to the world around
them, but objects don’t. So orientation sensors are usually used for refining the position
of objects rather than of people. In this section, you’ll see two types of orientation sensors:
a digital compass for determining heading relative to the Earth’s magnetic field, and
an accelerometer for determining orientation relative to the Earth’s gravitational field.
Using these two sensors, you can determine which way is north and which way is up.

Project 19

MTT_Chp8_F3.indd Sec1:284MTT_Chp8_F3.indd Sec1:284 8/29/07 4:23:16 PM8/29/07 4:23:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 285

Figure 8-10
Devantech CMPS03 compass connected to an Arduino Mini 04
module. Female headers have been soldered to the Arduino Mini’s
analog 4-7 holes to make them easier to use. Note that the SDA

and SCL lines need to have 4.7KΩ pull-up resistors connecting
them to 5V.

NOTE: To calibrate the compass, take pin 6 low and rotate the

compass slowly through 360 degrees on a flat, level surface.

When calibrating the compass, you need to know the cardinal

directions precisely. Get a magnetic needle compass and check

properly. You should calibrate away from lots of electronic

equipment and sources of magnetic energy (except the Earth).

For example, in my office, needle compasses tend to point west-

southwest, so I calibrate outside, powering the whole Arduino

circuit from a battery. For more on calibrating the CMPS03, see

www.robot-electronics.co.uk/htm/cmps_cal.shtml.

MTT_Chp8_F3.indd Sec1:285MTT_Chp8_F3.indd Sec1:285 8/29/07 4:23:36 PM8/29/07 4:23:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

286 MAKING THINGS TALK

This program uses the
Wire library to communi-

cate via I2C with the compass. There
are no global variables, but before the
setup() method, you have to include
the library and define a couple of
constants that are operational codes
for the compass module.

/*

 CMPS03 compass reader

 language: Wiring/Arduino

 Reads data from a Devantech CMPS03 compass sensor.

 Sensor connections:

 SDA - Analog pin 4

 SCL - Analog pin 5

 */

// include Wire library to read and write I2C commands:

#include <Wire.h>

// the commands needed for the SRF sensors:

#define sensorAddress 0x60

// this is the memory register in the sensor that contains the result:

#define resultRegister 0x02

void setup()

{

 Wire.begin(); // start the I2C bus

 Serial.begin(9600); // open the serial port

}

void loop()

{

 // send the command to read the result in inches:

 setRegister(sensorAddress, resultRegister);

 // read the result:

 int bearing = readData(sensorAddress, 2);

 // print it:

 Serial.print("bearing: ");

 Serial.print(bearing/10);

 Serial.println(" degrees");

 delay(70); // wait before next reading

}

/*

 setRegister() tells the SRF sensor to change the address

 pointer position

 */

void setRegister(int address, int thisRegister) {

 Wire.beginTransmission(address); // start I2C transmission

 // send address to read from:

 Wire.send(thisRegister);

 Wire.endTransmission(); // end I2C transmission

}

The setup() method initializes the
Wire and Serial libraries.

8

The main loop calls a method
called setRegister() to read from the
compass’ registers. Then it prints what
it read. The compass needs about 68
milliseconds between readings, so the
loop delays after the readings.

8

The compass has memory
registers and function registers.
The compass heading is stored in a
memory register. To read it, you send
an initial transmission of the address
of the register you want to read from,
then you request however many bytes
you want to read.

8

 Try It

MTT_Chp8_F3.indd Sec1:286MTT_Chp8_F3.indd Sec1:286 8/29/07 4:24:09 PM8/29/07 4:24:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 287

/*

readData() returns a result from the SRF sensor

 */

int readData(int address, int numBytes) {

 int result = 0; // the result is two bytes long

 // send I2C request for data:

 Wire.requestFrom(address, numBytes);

 // wait for two bytes to return:

 while (Wire.available() < 2) {

 // wait for result

 }

 // read the two bytes, and combine them into one int:

 result = Wire.receive() * 256;

 result = result + Wire.receive();

 // return the result:

 return result;

}

readData() makes the request for
two bytes of data from the compass’
memory register, waits until those
bytes have been returned, reads them,
and returns the result as a single
integer.

8

MTT_Chp8_F3.indd Sec1:287MTT_Chp8_F3.indd Sec1:287 8/29/07 4:24:47 PM8/29/07 4:24:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

288 MAKING THINGS TALK

Compass heading is an excellent way
to determine orientation if you’re level
with the Earth, but sometimes you need
to know how you’re tilted. In navigation
terms, this is called your attitude, and
there are two major aspects to it: roll and
pitch. Roll refers to how you’re tilted side-
to-side. Pitch refers how you’re tilted front-
to-back. If you’ve ever used an analog
compass, you know how important it is
to control your roll and pitch in order to
get an accurate reading. Rotation on the
axis perpendicular to the horizon is called
yaw, and for our purposes, it’s easiest to
measure with a compass.

MATERIALS

1 solderless breadboard such as Digi-Key
part number 438-1045-ND, or Jameco part
number 20601
1 Arduino module or other microcontroller
1 Analog Devices ADXL320 accelerometer
SparkFun sells a module with this accelerometer
mounted on a breakout board, part number
SEN-00847

»

»
»

Determining Attitude Using an Accelerometer

Measuring roll and pitch is relatively easy to do using an
accelerometer. You used one of these already in Chapter 5,
in the seesaw ping pong client. Accelerometers measure
changing acceleration. At the center of an accelerometer
is a tiny mass that’s free to swing in one, two, or three
dimensions. As the accelerometer tilts relative to the
earth, the gravitational force exerted on the mass changes.
Because force equals mass times acceleration, and
because the mass of the accelerometer is constant, the
change is read as a changing acceleration.

In the following example, you’ll use an accelerometer to
control the pitch and roll of a disk onscreen in Processing.
The numeric values from the sensor are written on the
disk as it tilts.

Connect the accelerometer to the
Arduino as shown in Figure 8-11. Then
program it using the following code:

8

»

/*

 Accelerometer reader

 language: Wiring/Arduino

 Reads 2 axes of an accelerometer and sends the

 values out the serial port

 */

int accelerometer[2]; // variable to hold the accelerometer values

void setup() {

 // open serial port:

 Serial.begin(9600);

 // send out some initial data:

 Serial.println("0,0,");

}

Project 20

MTT_Chp8_F3.indd Sec1:288MTT_Chp8_F3.indd Sec1:288 8/29/07 4:25:08 PM8/29/07 4:25:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 289

Figure 8-11
ADXL320 acceler-
ometer connected to
an Arduino Mini 04
module. The detail
photo shows the board
with the accelerometer
removed to show the
wiring underneath.

MTT_Chp8_F3.indd Sec1:289MTT_Chp8_F3.indd Sec1:289 8/29/07 4:25:30 PM8/29/07 4:25:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

290 MAKING THINGS TALK

»

Continued from previous page.

void loop() {

 // read 2 channels of the accelerometer:

 for (int i = 0; i < 2; i++) {

 accelerometer[i] = analogRead(i);

 // delay to allow analog-to-digital converter to settle:

 delay(10);

 }

 // if there's serial data in, print sensor values out:

 if (Serial.available() > 0) {

 // read incoming data to clear serial input buffer:

 int inByte = Serial.read();

 for (int i = 0; i < 2; i++) {

 // values as ASCII strings:

 Serial.print(accelerometer[i], DEC);

 // print commas between values:

 Serial.print(",");

 }

 // print \r and \n after values are sent:

 Serial.println();

 }

}

This sketch
uses a call-and-

response serial method, so you won’t
see any data coming out unless you
send it a character serially. You can test
it using your favorite serial terminal
program. With the serial port open in
the serial terminal program, type any
key to make the microcontroller send
a response. Once you’ve got it working,
run the following sketch in Process-
ing, making sure that the serial port
opened by the program matches the
one to which your microcontroller is
connected:

/*

 accelerometer tilt

 language: Processing

 Takes the values from an accelerometer

 and uses it to set the attitudeof a disk on the screen.

 */

import processing.serial.*; // import the serial lib

int graphPosition = 0; // horizontal position of the graph

int[] vals = new int[2]; // raw values from the sensor

int[] maximum = new int[2]; // maximum value sensed

int[] minimum = new int[2]; // minimum value sensed

int[] range = new int[2]; // total range sensed

float[] attitude = new float[2]; // the tilt values

float position; // position to translate to

Serial myPort; // the serial port

boolean madeContact = false; // whether there's been serial data sent in

void setup () {

 // draw the window:

 size(400, 400, P3D);

 // set the background color:

 Connect It

MTT_Chp8_F3.indd Sec1:290MTT_Chp8_F3.indd Sec1:290 8/29/07 4:26:20 PM8/29/07 4:26:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 291

Continued from opposite page.

 background(0);

 // set the maximum and minimum values:

 for (int i = 0; i < 2; i++) {

 maximum[i] = 600;

 minimum[i] = 200;

 // calculate the total current range:

 range[i] = maximum[i] - minimum[i];

 }

 position = width/2; // calculate position

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 18);

 textFont(myFont);

 // list all the available serial ports:

 println(Serial.list());

 // Open whatever port you're using.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // generate a serial event only when you get a return char:

 myPort.bufferUntil('\r');

 // set the fill color:

 fill(90,250,250);

}

The draw() method just refreshes
the screen in the window, as usual.
It calls a method, setAttitude(), to
calculate the tilt of the plane. Then it
calls a method called tilt() to actually
tilt the plane.

8

The 3D system in Processing
works on rotations from zero to 2*PI.
setAttitude() converts the accelerom-
eter readings into that range, so the
values can be used to set the tilt of
the plane.

8

void draw () {

 // clear the screen:

 background(0);

 // print the values:

 text(vals[0] + " " + vals[1], -30, 10);

 // if you've never gotten a string from the microcontroller,

 // keep sending carriage returns to prompt for one:

 if (madeContact == false) {

 myPort.write('\r');

 }

 setAttitude(); // set the attitude

 tilt(); // draw the plane

}

void setAttitude() {

 for (int i = 0; i < 2; i++) {

 // calculate the current attitude as a percentage of 2*PI,

 // based on the current range:

 attitude[i] = (2*PI) * float(vals[i] - minimum[i]) /float(range[i]);

 }

}

MTT_Chp8_F3.indd Sec1:291MTT_Chp8_F3.indd Sec1:291 8/29/07 4:26:50 PM8/29/07 4:26:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

292 MAKING THINGS TALK

Figure 8-12
The output of the Processing
accelerometer sketch.

The tilt() method uses Process-
ing’s translate() and rotate() methods
to move and rotate the plane of the
disc to correspond with the accelerom-
ter’s movement.

8

The serialEvent() method reads all
the incoming serial bytes and parses
them as comma-separated ASCII
values just as you did in Monski pong
in Chapter 2.

8

void tilt() {

 // translate from origin to center:

 translate(position, position, position);

 // X is front-to-back:

 rotateX(-attitude[1]);

 // Y is left-to-right:

 rotateY(-attitude[0] - PI/2);

 // set the fill color:

 fill(90,250,250);

 // draw the rect:

 ellipse(0, 0, width/4, width/4);

 // change the fill color:

 fill(0);

 // draw some text so you can tell front from back:

 // print the values:

 text(vals[0] + " " + vals[1], -30, 10,1);

}

// The serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // if serialEvent occurs at all, contact with the microcontroller

 // has been made:

 madeContact = true;

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas

 //and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // if you received all the sensor strings, use them:

 if (sensors.length >= 2) {

 vals[0] = sensors[0];

 vals[1] = sensors[1];

 // send out the serial port to ask for data:

 myPort.write('\r');

 }

 }

}

MTT_Chp8_F3.indd Sec1:292MTT_Chp8_F3.indd Sec1:292 8/29/07 4:27:25 PM8/29/07 4:27:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

HOW TO LOCATE (ALMOST) ANYTHING 293

Conclusion
When you start to develop projects that use location systems, you usually find that
less is more. It’s not unusual to start a project thinking you need to know position,
distance, and orientation, then pare away systems as you develop the project.
The physical limitations of the things you build and the spaces you build them in
solve many problems for you.

This effect, combined with your users’ innate ability to
locate and orient themselves, makes your job much easier.
Before you start to solve all problems in code or electron-
ics, put yourself physically in the place you’re building for,
and do what you intend your users to do. You’ll learn a lot
about your project, and save yourself time, aggravation,
and money.

The examples in this chapter are all focused on a solitary
person or object. As soon as you introduce multiple par-
ticipants, location and identification become more tightly
connected, because you need to know whose signal is
coming from a given location, or what location a given
speaker is at. In the next chapter, you’ll see methods
crossing the line from physical identity to network identity.
X

MTT_Chp8_F3.indd Sec1:293MTT_Chp8_F3.indd Sec1:293 8/29/07 4:28:06 PM8/29/07 4:28:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

294 MAKING THINGS TALK

MTT_Chapter9.indd Sec1:294MTT_Chapter9.indd Sec1:294 8/30/07 5:17:05 PM8/30/07 5:17:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Identification
In the previous chapters, you’ve assumed that identity equals address.

Once you knew a device’s address on the network, you started talking.

Think about how disastrous this would be if you used this formula in

everyday life: you pick up the phone, dial a number, and just start talking.

What if you dialed the wrong number? What if someone other than the

person you expected answers the phone?

 Networked objects mark the boundaries of networks, but not of the

communications that travel across them. We use these devices to send

messages to other people. The network identity of the device and the

physical identity of the person are two different things. Physical identity

generally equates to presence (is it near me?) or address (where is it?),

but also takes into consideration network capabilities of the device and the

state it’s in when you contact it. In this chapter, you’ll learn some methods

for giving physical objects network identities. You’ll also learn ways that

devices on a network can learn each other’s capabilities though the

messages they send and the protocols they use.

9
MAKE: PROJECTS

Sniff, a toy for sight-impaired children, by Sara Johansson.

The dog’s nose contains an RFID reader. When he detects RFID-tagged objects, he gives sound and tactile feedback,
a unique response for each object. Designed by Sara Johansson, a student in the Tangible Interaction course at
the Oslo School of Architecture and Design, under the instruction of tutors Timo Arnall and Mosse Sjaastad.
Photo courtesy of Sara Johansson.

MTT_Chapter9.indd Sec1:295MTT_Chapter9.indd Sec1:295 8/31/07 1:16:59 PM8/31/07 1:16:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

296 MAKING THINGS TALK

Physical Identification
The process of identifying physical objects is such a fundamental part of our experience
that we seldom think about how we do it. We use our senses, of course: we look at, feel,
pick up, shake and listen to, smell, and taste objects until we have a reference for them
— then we give them a label. The whole process relies on some pretty sophisticated
work by our brains and bodies, and anyone who’s ever dabbled in computer vision
or artificial intelligence in general can tell you that teaching a computer to recognize
physical objects is no small feat. Just as it’s easier to determine location by having a
human being narrow it down for you, it’s easier to distinguish objects computationally
if you can limit the field, and if you can label the important objects.

Just as we identify things using information from our
senses, so do computers. They can identify physical
objects only by using information from their sensors. Two
of the best-known digital identification techniques are
optical recognition and radio frequency identification, or
RFID. Optical recognition can take many forms, from video
color tracking and shape recognition to the ubiquitous bar
code. Once an object has been recognized by a computer,
the computer can give it an address on the network.

The network identity of a physical object can be centrally
assigned and universally available, or it can be provisional.
It can be used only by a small subset of devices on a
larger network or used only for a short time. RFID is an
interesting case in point. The RFID tag pasted on the side
of a book may seem like a universal marker, but what it
means depends on who reads it. The owner of a store may
assign that tag’s number a place in his inventory, but to
the consumer who buys it, it means nothing unless she
has a tool to read it and a database in which to categorize
it. She has no way of knowing what the number meant to
the store owner unless she has access to his database.
Perhaps he linked that ID tag number to the book’s title, or
to the date on which it arrived in the store. Once it leaves
the store, he may delete it from his database, so it loses
all meaning to him. The consumer, on the other hand, may
link it to entirely different data in her own database, or she
may choose to ignore it entirely, relying on other means
to identify it. In other words, there is no central database
linking RFID tags and the things they’re attached to, or
who’s possessed them.

Like locations, identities become more uniquely descrip-
tive as the context they describe becomes larger. For
example, knowing that my name is Tom doesn’t give you
much to go on. Knowing my last name narrows it down
some more, but how effective that is depends on where
you’re looking. In the United States, there are dozens of
Tom Igoes. In New York, there are at least three. When you
need a unique identifier, you might choose a universal
label, like using my Social Security number, or you might
choose a provisional label, like calling me “Frank’s son
Tom.” Which you choose depends on your needs in a
given situation. Likewise, you may choose to identify
physical objects on a network using universal identifiers,
or you might choose to use provisional labels in a given
temporary situation.

The capabilities assigned to an identifier can be fluid as
well. Taking the RFID example again: in the store, a given
tag’s number might be enough to set off alarms at the
entrance gates or to cause a cash register to add a price
to your total purchase. In another store, that same tag
might be assigned no capabilities at all, even if it’s using
the same protocol as other tags in the store. Confusion
can set in when different contexts use similar identifiers.
Have you ever left a store with a purchase and tripped
the alarm, only to be waved on by the clerk who forgot to
deactivate the tag on your purchase? Try walking into a
Barnes & Noble bookstore with jeans you just bought at a
Gap store and you’re likely to trip the alarms because the
two companies use the same RFID tags, but don’t always
set their security systems to filter out tags that are not in
their inventory.

MTT_Chapter9.indd Sec1:296MTT_Chapter9.indd Sec1:296 8/30/07 5:24:44 PM8/30/07 5:24:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 297

Video Identification
All video identification relies on the same basic method:
the computer reads a camera’s image and stores it as a
two-dimensional array of pixels. Each pixel has a char-
acteristic brightness and color that can be measured
using any one of a number of palettes: red-green-blue is a
common scheme for video and screen-based applications,
as is hue-saturation-value. Cyan-magenta-yellow-black is
common in print applications. The properties of the pixels,
taken as a group, form patterns of color, brightness, and
shape. When those patterns resemble other patterns in
the computer’s memory, it can identify those patterns
as objects.

Color Recognition
Recognizing objects by color is a relatively simple process,
if you know that the color you’re looking for is unique in
the camera’s image. This technique is used in film and
television production to make superheroes fly. The actor is
filmed against a screen of a unique color, usually green, as
green isn’t a natural color for human skin. Then the pixels
of that color are removed, and the image is combined with
a background image.

Color identification can be an effective way to track physi-
cal objects in a controlled environment. Assuming that
you’ve got a limited number of objects in the camera’s view,
and each object’s color is unique and doesn’t change as
the lighting conditions change, you can identify each object
reasonably well. Even slight changes in lighting can change
the color of a pixel, however, so lighting conditions need to
be tightly controlled, as the following project illustrates.
X

Video color recognition in
Processing, using the code
in Project 21. This simple
sketch works well with
vibrantly pink monkeys.

MTT_Chapter9.indd Sec1:297MTT_Chapter9.indd Sec1:297 8/30/07 5:25:05 PM8/30/07 5:25:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

298 MAKING THINGS TALK

In this project, you’ll get a firsthand
look at how computer vision works. The
Processing sketch shown here uses a
video camera to generate a digital image,
looks for pixels of a specific color, and
then marks them on the copy of the
image that it displays onscreen for you.
Processing has a video library that enables
you to capture the image from a webcam
attached to your computer and manip-
ulate the pixels.

MATERIALS

Personal computer with USB or FireWire port
USB or FireWire webcam
Colored objects

»
»
»

The following Processing sketch is an example of color
tracking using the video library. To use this, you’ll need to
have a camera attached to your computer, and have the
drivers installed. The one you used in Chapter 3 for the cat
camera should do the job fine. You’ll also need some small
colored objects. Stickers or toy balls can work well.

Color Recognition Using a Webcam

First, import the video library and
write a program to read the camera.
Every time a new frame of video is
available, the video library generates a
captureEvent. You can use this to read
the video, then paint it to the stage:

Run this sketch and you should see
yourself onscreen.

8

»

/*

 Color Sensor

 Language: Processing

*/

import processing.video.*;

Capture myCamera; // instance of the Capture class

void setup()

{

 // set window size:

 size(320, 240);

 // List all available capture devices. Macintoshes generally

 // identify three cameras, and the first or second is the built-in

 // iSight of the laptops. Windows machines need a webcam

 // installed before you can run this program.

 println(Capture.list());

 // capture from the second device in the list (in my case,

 // my iSight).

 //

 // change this to match your own camera:

 String myCam = Capture.list()[1];

 myCamera = new Capture(this, myCam, width, height, 30);

}

Project 21

MTT_Chapter9.indd Sec1:298MTT_Chapter9.indd Sec1:298 8/30/07 5:25:30 PM8/30/07 5:25:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 299

Now, add a method to capture the
color of a pixel at the mouse location.
First, add two new global variables at
the top of the program for the target
color and the pixel location where you
find it:

8 color targetColor = color(255,0,0); // the initial color to find

int[] matchingPixel = new int[2]; // matching pixel's coordinate

Continued from opposite page.

void draw(){

 // draw the current frame of the camera on the screen:

 image(myCamera, 0, 0);

}

void captureEvent(Capture myCamera) {

 // read the myCamera and update the pixel array:

 myCamera.read();

}

Then add two lines of code at the end
of the draw() method to draw the ball:

When you run the sketch this time, you
can click anywhere on the image and
you’ll get a dot at that location matching
the color of the video at the spot.

8 // draw a dot at the matchingPixel:

 fill(targetColor);

 ellipse(matchingPixel[0], matchingPixel[1], 10, 10);

Then add the following mouse
Released() method at the end of the
sketch:

8 /* when the mouse is clicked, capture the

 color of the pixel at the mouse location

 to use as the tracking color:

 */

void mouseReleased() {

 // get the color of the mouse position's pixel:

 targetColor = myCamera.pixels[mouseY*width+mouseX];

 // get the pixel location

 matchingPixel[0] = mouseX;

 matchingPixel[1] = mouseY;

}

To find other colors matching this
color, you have to scan through all
the pixels in the image to see which
one’s red, blue, and green matches
yours. To do this, add a method called
findColor() that takes the target color
as a parameter, and returns the pixel
matching that color as a return value:

8 int[] findColor(color thisColor) {

 // initialize the matching position with impossible numbers:

 int[] bestPixelYet = {

 -1,-1 };

 // intialize the smallest acceptable color difference:

 float smallestDifference = 1000.0;

 // scan over the pixels to look for a pixel

 // that matches the target color:

 for(int row=0; row<height; row++) { »

MTT_Chapter9.indd Sec1:299MTT_Chapter9.indd Sec1:299 8/30/07 5:25:55 PM8/30/07 5:25:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

300 MAKING THINGS TALK

Continued from previous page.

 for(int column=0; column<width; column++) { //for each column

 //get the color of this pixel

 // find pixel in linear array using formula:

 // pos = row*rowWidth+column

 color pixelColor = myCamera.pixels[row*width+column];

 // determine the difference between this pixel's color

 // and the target color:

 float diff = abs(red(targetColor) - red(pixelColor)) +

 abs(green(targetColor) - green(pixelColor)) +

 abs(blue(targetColor) - blue(pixelColor))/3;

 // if this is closest to our target color, take note of it:

 if (diff<= smallestDifference){

 smallestDifference = diff;

 // save the position so you can return it:

 bestPixelYet[0] = row;

 bestPixelYet[1] = column;

 }

 }

 }

 return bestPixelYet;

}

Add these lines to the end of
captureEvent():

For the sketch in its entirety,
see Appendix C.

8 // look for a pixel matching the target color

 matchingPixel = findColor(targetColor);

As you can see when you run it, it’s not the
most robust color tracker! You can get it to be

more precise by controlling the image and the lighting
very carefully. Day-Glo colors under ultraviolet fluorescent
lighting tend to be the easiest to track, but they lock you
into a very specific visual aesthetic. Objects that produce
their own light are easier to track, especially if you put a
filter on the camera to block out stray light. A black piece
of 35mm film negative (if you can still find 35mm film!)
works well as a visible light filter, blocking most everything
but infrared light. Two polarizers, placed so that their
polarizing axes are perpendicular, also work well. Infrared
LEDs track very well through this kind of filter, as do incan-
descent flashlight lamps. Regular LEDs don’t always work
well as color tracking objects, unless they’re relatively dim.

Brighter LEDs tend to show up as white in a camera image
because their brightness overwhelms the camera.

Color recognition doesn’t have to be done with a camera.
There are color sensors that can do the same job. Parallax
(www.parallax.com) sells a color sensor, the TAOS
TCS230. This sensor contains four photodiodes, three
of which are covered with color filters, and the fourth of
which is not, so it can read red, green, blue, and white light.
It outputs the intensity of all four channels as a changing
pulse width.

MTT_Chapter9.indd Sec1:300MTT_Chapter9.indd Sec1:300 8/30/07 5:26:19 PM8/30/07 5:26:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 301

Designer Durrell Bishop’s marble telephone answering

machine is an excellent example of the challenges of identi-

fying physical tokens. With every new message the machine

receives, it drops a marble into a tray on the front of the

machine. The listener hears the messages played back by

placing a marble on the machine’s “play” tray. Messages

are erased and the marbles recycled when the marble is

dropped back into the machine’s hopper. Marbles become

physical tokens representing the messages, making it very

easy to tell at a glance how many messages there are.

Bishop tried many different methods to reliably identify and

categorize physical tokens representing the messages:

“I fi rst made a working version with a motor and large

screw (like a vending machine delivery mechanism), with

pieces of paper tickets hung on the screw and had different

color gray levels on the back. When it got a new message

the machine read the next gray before it rotated once and

dropped the ticket.

 It was a bit painful so I bought beads and stuffed resistors

in to the hole which was capped (soldered) with sticky

backed copper tape. When I went to Apple and worked with

Jonathan Cohen we built a properly hacked version for the

Mac with networked bar codes.

 Later again with Jonathan but this time at Interval

Research, we used the Dallas ID chips.”

Color by itself isn’t enough to give you identity in most

cases, but there are ways in which you can design a system

to use color as a marker of physical identity. However, it

has its limitations. In order to tell the marbles apart, Bishop

could have used color recognition to read the marbles, but

that would limit the design in at least two ways. First, there

would be no way to tell the difference between multiple

marbles of the same color. If, for example, he wanted to use

color to identify the different people who received messages

on the same answering machine, there would then be no

way to tell the difference between multiple messages for

each person. Second, the system would be limited by the

number of colors between which the color recognition can

reliably differentiate.

Challenges of Identifying Physical Tokens

Shape and Pattern Recognition
Recognizing a color is relatively simple computationally,
but recognizing a physical object is more challenging. To
do this, you need to know the two-dimensional geometry
of the object from every angle, so that you can compare
any view you get of the object.

A computer can’t actually “see” in three dimensions using
a single camera. The view it has of any object is just a
two-dimensional shadow. Furthermore, it has no way of
distinguishing one object from another in the camera
view without some visual reference. The computer has
no concept of a physical object. It can only compare
patterns. It can rotate the view, stretch it, and do all
kinds of mathematical transformations on the pixel
array, but the computer doesn’t understand an object
as a discrete entity the same way a human does. It just
matches patterns. You could use two or more cameras
to get a stereoscopic view, or write an AI program to
give the computer a concept of a physical object, but a
simpler solution is usually to restrict the view to a single
two-dimensional plane, and to simplify the pattern. This is
where bar codes come in handy.

Figure 9-1
A one-dimensional bar
code. This is the ISBN bar
code for this book.

Bar Code Recognition
A bar code (see Figure 9-1) is simply a pattern of dark and
light lines or cells used to encode an alphanumeric string.
A computer reads a bar code by scanning the image and
interpreting the widths of the light and dark bands as
zeroes or ones. This scanning can be done using a camera,
or even a single photodiode, if the bar code can be passed
over the photodiode at a constant speed. Many handheld
bar code scanners work by having the user run a wand
with an LED and a photodiode in the tip over the bar code,
and reading the pattern of light and dark that the photodi-
ode detects.

MTT_Chapter9.indd Sec1:301MTT_Chapter9.indd Sec1:301 9/4/07 10:45:49 AM9/4/07 10:45:49 AM

www.it-ebooks.info

http://www.it-ebooks.info/

302 MAKING THINGS TALK

The best known bar code application is the Universal
Product Code, or UPC, used by nearly every major
manufacturer on the planet to label goods. There are
many dozen different bar code symbologies, used for a
wide range of applications. POSTNET is used by the U.S.
Postal Service to automate mail sorting. European Article
Numbering, or EAN, and Japanese Article Numbering,
or JAN, are supersets of the UPC system developed to
facilitate international exchange of goods. Each symbology
represents a different mapping of bars to alphanumeric
characters. The symbologies are not interchangeable, so
you can’t properly interpret a POSTNET bar code if you’re
using an EAN interpreter. This means that either you have
to write a more comprehensive piece of software that can
interpret several symbologies, or you have to know the
symbology in advance if you want to get a reliable reading.
There are numerous software libraries for generating bar
codes, and even several bar code fonts for some of the
more popular symbologies.

Bar codes such as the one shown earlier are called one-
dimensional bar codes because the scanner or camera
needs to read the image only along one axis. There are
also two-dimensional bar codes that encode data in a two-
dimensional matrix for more information density. As with

Figure 9-2
A two-dimensional
bar code.

one-dimensional bar codes, there are a variety of symbolo-
gies. Figure 9-2 shows a typical two-dimensional bar code.
This type of code, the QR (Quick Response) code, was
originally created in Japan for tracking vehicle parts, but
it’s since become popular for all kinds of product labeling.
The inclusion of software to read these tags on many
camera phones in Japan has made the tags more popular.
The following example uses an open source Java library to
read QR codes in Processing. The Java library used here
was originally developed for use with the Java 2 Mobile
Edition (J2ME) on mobile phones.

ConQwest, designed for Qwest Wireless in 2003, by Area/Code
www.playareacode.com

The first ever use of semacode, 2D bar codes scanned by phonecams. A city-
wide treasure-hunt designed for high school students, players went through
the city “shooting treasure” with Qwest phonecams and moving their totem
pieces to capture territory. Online, a web site showed the players’ locations
and game progress, turning it into a spectacular audience-facing event.
Photo courtesy Area/Code and Kevin Slavin

MTT_Chapter9.indd Sec1:302MTT_Chapter9.indd Sec1:302 11/6/07 3:58:26 PM11/6/07 3:58:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 303

In the setup() for this sketch, you’ll
import the pqrcode and video libraries,
initialize a few global variables, and
establish a text font for printing on the
screen:

In this project, you’ll generate some two-
dimensional bar codes from text using an
online QR Code generator. Then you’ll decode
your tags using a camera and a computer.
Once this works, try decoding the QR Code
illustrations in this book.

2D Bar Code Recognition Using a Webcam

8 /*

 QRCode reader

 Language: Processing

*/

import processing.video.*;

import pqrcode.*;

Capture video; // video capture object

String statusMsg = "Waiting for an image"; // a string for messages

// decoder object from prdecoder library

Decoder decoder;

// make sure to generate your own image here:

String testImageName = "qrcode.png";

void setup() {

 size(400, 320);

 video = new Capture(this, width, height-20, 30);

 // create a decoder object:

 decoder = new Decoder(this);

 // create a font with a font available to the system:

 PFont myFont = createFont(PFont.list()[2], 14);

 textFont(myFont);

}

MATERIALS

Personal computer with USB or FireWire port
USB or FireWire Webcam
Printer

»
»
»

This sketch reads QR Codes using a camera attached to a
personal computer. The video component is very similar
to the color tracking example earlier. Before you start on
the sketch, though, you’ll need some QR Codes to read.
Fortunately, there are a number of QR Code generators
available online. Just type the term into a search engine
and see how many pop up. There’s a good one at qrcode.
kaywa.com, from which you can generate URLs, phone
numbers, or plain text. The more text you enter, the larger
the symbol is. Generate a few codes and print them out for
use later. Save them as .jpg or .png files as well, because
you’ll need them for the sketch.

To run this sketch, you’ll need to download the pqrcode
library for Processing by Daniel Shiffman, It’s based on
the qrcode library from qrcode.sourceforge.jp. You can
download the pqrcode library from www.shiffman.net/p5/
pqrcode. Unzip it, and you’ll get a directory called pqrcode/.
Drop it into the libraries/ subdirectory of your Processing
application directory and restart Processing. Make a
new sketch, and within the sketch’s directory, make a
subdirectory called data/ and put the .jpg or .png files of
the QR Codes that you generated earlier there. Now
you’re ready to begin writing the sketch.

Project 22

MTT_Chapter9.indd Sec1:303MTT_Chapter9.indd Sec1:303 9/4/07 10:47:40 AM9/4/07 10:47:40 AM

www.it-ebooks.info

http://www.it-ebooks.info/

304 MAKING THINGS TALK

The draw() method draws the
camera image and prints a status
message to the screen, and the captu-
reEvent() updates the camera as in the
previous project. Once you’ve entered
this much, you can run the sketch to
make sure that you got the libraries
in the right places, and that the video
works:

8
void draw() {

 background(0);

 // Display video

 image(video, 0, 0);

 // Display status

 text(statusMsg, 10, height-4);

}

void captureEvent(Capture video) {

 video.read();

}

The pqrcode library has a method
called decodeImage(). In order to
use it, you pass it an image. You’ll do
this in the keyReleased() method. A
switch statement checks to see which
key has been pressed. If you type f, it
passes the decoder a file called qrcode.
png from the data/ subdirectory. If
you press the spacebar, it passes the
camera image. If you type s, it brings
up a camera settings dialog box:

8 void keyReleased() {

 String code = "";

 // Depending on which key is hit, do different things:

 switch (key) {

 case ' ': // Spacebar takes a picture and tests it:

 // copy it to the PImage savedFrame:

 PImage savedFrame = createImage(video.width,video.height,RGB);

 savedFrame.copy(video, 0,0,video.width,video.height,0,0,

 video.width,video.height);

 savedFrame.updatePixels();

 // Decode savedFrame

 decoder.decodeImage(savedFrame);

 break;

 case 'f': // f runs a test on a file

 PImage preservedFrame = loadImage(testImageName);

 // Decode file

 decoder.decodeImage(preservedFrame);

 break;

 case 's': // s opens the settings for this capture device:

 video.settings();

 break;

 }

}

Once you’ve given the decoder an
image, you wait. When it’s decoded the
image, it generates a decoderEvent(),
and you can read the tag’s ID using the
getDecodedString() method:

8

// When the decoder object finishes

// this method will be invoked.

void decoderEvent(Decoder decoder) {

 statusMsg = decoder.getDecodedString();

}

»

Finally, add an if() statement to the
end of the draw() method to update
the user as to the status of an image
being decoded:

8 // If we are currently decoding

 if (decoder.decoding()) {

 // Display the image being decoded

 PImage show = decoder.getImage();

MTT_Chapter9.indd Sec1:304MTT_Chapter9.indd Sec1:304 8/30/07 5:27:49 PM8/30/07 5:27:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 305

Continued from opposite page.

 image(show,0,0,show.width/4,show.height/4);

 statusMsg = "Decoding image";

 // fancy code for drawing dots as a progress bar:

 for (int i = 0; i < (frameCount/2) % 10; i++)

 {

 statusMsg += ".";

 }

 }

When you run this, notice how the .jpg or .png
images scan much more reliably than the

camera images. The distortion from the analog-to-digital
conversion through the camera causes many errors. This
error is made worse by poor optics or low-end camera
imaging chips in mobile phones and web cams. Even with a
good lens, if the code to be scanned isn’t centered, the dis-
tortion at the edge of an image can throw off the pattern-
recognition routine. You can improve the reliability of the
scan by guiding the user to center the tag before taking an
image. Even simple graphic hints like putting crop marks
around the tag, as shown in Figure 9-3, can help. When
you do this, users framing the image tend to frame to the
crop marks, which ensures more space around the code,
and a better scan. Methods like this help with any optical
pattern recognition through a camera, whether it’s one- or
two-dimensional bar codess, or another type of pattern
altogether.

Optical recognition forces one other limitation on you
besides various limitations mentioned earlier: you have to
be able to see the bar code. By now most of the world is
familiar with bar codes, because they decorate everything
we buy or ship. This limitation is not only aesthetic. If
you’ve ever turned a box over and over looking for the bar
code to scan, you know that it’s also a functional limitation.
A system that allowed for machine recognition of physical
objects, but didn’t rely on a line of sight to the identify-
ing tag would be an improvement. This is one of the main
reasons that RFID is beginning to supersede bar codes in
inventory control and other ID applications.

Radio Frequency Identification
Like bar code recognition, RFID relies on tagging objects
in order to identify them. Unlike bar codes, however, RFID
tags don’t need to be visible to be read. An RFID reader
sends out a short-range radio signal, which is picked up by

Figure 9-3
A two-dimensional bar code (a QR Code, to be specific) with crop
marks around it. The image parsers won’t read the crop marks,
but they help users center the tag for image capture.

an RFID tag. The tag then transmits back a short string
of data. Depending on the size and sensitivity of the
reader’s antenna and the strength of the transmission,
the tag can be several feet away from the reader, enclosed
in a book, box, or item of clothing. In fact, some large
clothing manufacturers are now sewing RFID tags into
their merchandise, to be removed by the customer.

There are two types of RFID system: passive and active,
just like distance ranging systems. Passive RFID tags
contain an integrated circuit that has a basic radio

MTT_Chapter9.indd Sec1:305MTT_Chapter9.indd Sec1:305 9/4/07 10:48:43 AM9/4/07 10:48:43 AM

www.it-ebooks.info

http://www.it-ebooks.info/

306 MAKING THINGS TALK

transceiver and a small amount of nonvolatile memory.
They are powered by the current that the reader’s signal
induces in their antennas. The received energy is just
enough to power the tag to transmit its data once, and the
signal is relatively weak. Most passive readers can only
read tags a few inches to a few feet away.

In an active RFID system, the tag has its own power supply
and radio transceiver, and transmits a signal in response
to a received message from a reader. Active systems can
transmit for a much longer range than passive systems,
and are less error-prone. They are also much more
expensive. If you’re a regular automobile commuter and
you have to pass through a toll gate in your commute,
you’re probably an active RFID user. Systems like E-ZPass
use active RFID tags so that the reader can be placed
several meters away from the tag.

You might think that because RFID is radio-based, you
could use it to do radio distance ranging as well, but that’s
not the case. Neither passive nor active RFID systems are
typically designed to report the signal strength received
from the tag. Without this information, it’s impossible
to use RFID systems to determine the actual location of
a tag. All the reader can tell you is that the tag is within
reading range. Although some high-end systems can
report the tag signal strength, the vast majority of readers
are not made for location as well as identification.

RFID systems vary widely in cost. Active systems can cost
tens of thousands of dollars to purchase and install. Com-
mercial passive systems can also be expensive. A typical
passive reader that can read a tag a meter away from the
antenna typically costs a few thousand dollars. At the low
end, short-range passive readers can come as cheap as
$30 or less. As of this writing, $100 gets you a reader that
can read no more than a few inches. Anything that can
read a longer distance will be more expensive.

There are many different RFID protocols, just as with bar
codes. Short-range passive readers come in at least three
common frequencies: two low-frequency bands at 125 and
134.2Khz, and high-frequency readers at 13.56MHz. The
higher-frequency readers allow for faster read rates and
longer-range reading distances. In addition to different fre-
quencies, there are also different protocols. For example,
in the 13.56 band alone, there are the ISO 15693 and
ISO 14443 and 14443-A standards; within the ISO 15693
standard, there are different implementations by different
manufacturers: Philips’ I-Code, Texas Instruments’ Tag-IT
HF, Picotag, and implementations by Infineon, STMicro-

electronics, and others. Within the ISO 14443 standard,
there’s Philips’ Mifare, Mifare UL, ST’s SR176, and others.
So you can’t count on one reader to read every tag. You
can’t even count on one reader to read all the tags in a
given frequency range. You have to match the tag to the
reader.

There are a number of inexpensive and easy-to-use
readers on the market now, covering the range of passive
RFID frequencies and protocols. Parallax (www.parallax.
com) sells a 125KHz reader that can read EM Microelec-
tronic tags such as EM4001 tags. It has a built-in antenna,
and the whole module is about 2.5" x 3.5", on a flat circuit
board. ID Innovations makes a number of small low-
frequency readers less than 1.5 inches on a side, capable
of reading the EM4001 protocol tags. SparkFun (www.
sparkfun.com) and CoreRFID (www.rfidshop.com) both
sell the ID Innovations readers and matching tags. The ID
Innovations readers and the Parallax readers can read the
same tags. Trossen Robotics (www.trossenrobotics.com)
sells a range of readers, the least expensive of which is
the APSX RW-210, a 13.56MHz module that can read and
write to tags using the ISO 15693 protocol. Trossen’s also
got a wide range of tags for everyone’s readers, including
the EM tags that match the Parallax and ID Innovations
readers. SkyeTek (www.skyetek.com) makes a number
of small readers like the M1 and the M1-mini that operate
in the 13.56MHz range as well. Though their readers are
moderately priced, SkyeTek generally doesn’t sell them
until you’ve bought their development kit, which is priced
considerably higher. Texas Instruments (www.ti.com/rfid/
shtml/rfid.shtml) makes a 134.2KHz reader, the RI-STU-
MRD1. The Texas Instruments reader and the SkyeTek
readers are the only ones mentioned here that don’t come
with a built-in antenna. You can make your own, however,
and TI helpfully provides advice on how to do it in the
reader’s data sheet.

RFID tags come in a number of different forms, as shown
in Figure 9-4: sticker tags, coin discs, key fobs, credit cards,
playing cards, even capsules designed for injection under
the skin. The last are used for pet tracking and are not
designed for human use, though there are some adventur-
ous hackers who have had these tags inserted under their
own skin. Like any radio signal, RFID can be read through
a number of materials, but is blocked by any kind of RF
shielding, like wire mesh, conductive fabric lamé, metal foil,
or adamantium skeletons. This feature means that you can
embed it in all kinds of projects, as long as your reader has
the signal strength to penetrate.

MTT_Chapter9.indd Sec1:306MTT_Chapter9.indd Sec1:306 8/30/07 5:28:33 PM8/30/07 5:28:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 307

Before picking a reader, think about the environment in
which you plan to deploy it, and how that affects both
the tags and the reading. Will the environment have a lot
of RF noise? In what range? Consider a reader outside
that range. Will you need a relatively long-range read?
If so, look at the high-frequency readers, if possible. If
you’re planning to read existing tags rather than tags you
purchase yourself, research carefully in advance, because
not all readers will read all tags. Pet tags can be some of
the trickiest, as many of them operate in the 134.2KHz
range, in which there are fewer readers to choose from.

In picking a reader, you also have to consider how it
behaves when tags are in range. For example, even though
the Parallax reader and the ID Innovations readers can
read the same tags, they behave very differently when a
tag is in range. The ID Innovations reader reports the tag
ID only once. The Parallax reader reports it continually
until the tag is out of range. The behavior of the reader can
affect your project design, as you’ll see later on.

All of the readers mentioned here have TTL serial inter-
faces, so they can be connected to a microcontroller or a

Most RFID capsules are not sanitized for internal

use in animals (humans included), and they’re definitely

not designed to be inserted without qualified medical

supervision. Besides, insertion hurts. Don’t RFID-enable

yourself or your friends. Don’t even do it to your pets—let

your vet do it for you. If you’re really gung-ho to be RFID-

tagged, make yourself a nice set of RFID tag earrings.

!

Figure 9-4
RFID tags in all shapes and sizes.

USB-to-serial module very easily. Sketches in Processing
for the APSX reader, the Parallax reader, and the ID Inno-
vations reader follow. All of these readers have a similar
operating scheme. The APSX is the only one you need to
send a serial command to; all of the others simply transmit
a tag ID whenever a tag is in range.
X

MTT_Chapter9.indd Sec1:307MTT_Chapter9.indd Sec1:307 8/31/07 1:17:44 PM8/31/07 1:17:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

308 MAKING THINGS TALK

In this project, you’ll read some RFID
tags and get a sense of how the readers
behave. You’ll see how far away from your
reader a tag can be read. This is a handy
test program for use any time you’re
adding RFID to a project.

Reading RFID Tags in Processing

The Circuits
The circuits for all three readers are fairly similar. Connect
the module to 5V and ground, and connect the reader’s
serial transmit line to the serial adaptor’s serial receive
line, and vice versa. For the Parallax reader, you’ll also
need to attach the enable pin to ground. For the ID12,
connect the reset pin to 5V, and connect an LED from the
Card Present pin to ground as well. Figures 9-6, 9-7, and
9-8 show the circuits for the Parallax, ID Innovations, and
ASPX readers, respectively.

Parallax RFID Reader
The Parallax reader is the simplest of the three readers
to read. It communicates serially at 2400 bps. When the
Enable pin is held low, it sends a reading whenever a tag
is in range. The tag ID is a 12-byte string starting with a
carriage return (ASCII 13) and finishing with a newline
(ASCII 10). The ten digits in the middle are the unique
tag ID. The EM4001 tags format their tag IDs as ASCII-
encoded hexadecimal values, so the string will never
contain anything but the ASCII digits 0 through 9 and the
letters A through F.

MATERIALS

RFID reader Either the RFID Reader Module
from Parallax, part number 28140; the ID
Innovations ID-12 from CoreRFID or from SparkFun
as part number SEN-08419; or the APSX RW-210
from Trossen Robotics.
Two 2mm female header rows If you’re using the
ID12 reader, you’ll need Samtec (www.samtec.com)
part number MMS-110-01-L-SV. Samtec, like many
part makers, supplies free samples of this part
in small quantities. SparkFun sells these as part
number PRT-08272. They also sell a breakout board
for the module, part number SEN-08423.
RFID tags Get the tags that match your reader.
All three of the retailers listed earlier in this list sell
tags that match their readers in a variety of physical
packages, so choose the ones you like the best.
1 USB-to-TTL serial adaptor SparkFun’s BOB-
00718 from Chapter 2 can do the job. If you use a
USB-to-RS232 adaptor such as a Keyspan or Iogear
dongle, refer to Chapter 2 for the schematics to
convert RS-232-to-5V TTL serial.

»

»

»

»

The following sketch waits
for twelve serial bytes,

strips out the carriage return and the
newline, and prints the rest to the
screen:

»

/*

 Parallax RFID Reader

 language: Processing

*/

// import the serial library:

import processing.serial.*;

Serial myPort; // the serial port you're using

String tagID = ""; // the string for the tag ID

void setup() {

 size(600,200);

 Try It

Project 23

MTT_Chapter9.indd Sec1:308MTT_Chapter9.indd Sec1:308 8/30/07 5:29:31 PM8/30/07 5:29:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 309

Figure 9-6
The Parallax RFID reader connected
to an FTDI USB-to-serial adaptor.

MTT_Chapter9.indd Sec1:309MTT_Chapter9.indd Sec1:309 8/30/07 5:29:52 PM8/30/07 5:29:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

310 MAKING THINGS TALK

Continued from previous page.

 // list all the serial ports:

 println(Serial.list());

 // based on the list of serial ports printed from the

 // previous command, change the 0 to your port's number:

 String portnum = Serial.list()[0];

 // initialize the serial port:

 myPort = new Serial(this, portnum, 2400);

 // incoming string from reader will have 12 bytes:

 myPort.buffer(12);

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 24);

 textFont(myFont);

}

void draw() {

 // clear the screen:

 background(0);

 // print the string to the screen:

 text(tagID, width/4, height/2 - 24);

}

/*

 this method reads bytes from the serial port

 and puts them into the tag string.

 It trims off the \r and \n

 */

void serialEvent(Serial myPort) {

 tagID = trim(myPort.readString());

}

ID Innovations ID12 Reader
The ID Innovations reader (see Figure 9-7) is slightly more
complex than the Parallax reader. It operates at 9600 bps.
It has an output pin that goes high when a tag is present,
which is a handy way to know if it’s reading your tag, even
if you haven’t got it connected to anything. It reads the
same tags as the Parallax reader, but doesn’t format the
data the same way. All the ID Innovations readers use the
same protocol. It starts with a start-of-transmission (STX)

byte (ASCII 02) and ends with an end-of-transmission
(ETX) byte (ASCII 03). The STX is followed by the ten-byte
tag ID. A checksum follows that, then a carriage return
(ASCII 13) and linefeed (ASCII 10), then the ETX. The
EM4001 tags format their tag IDs as ASCII-encoded
hexadecimal values, so the string will never contain
anything but the ASCII digits 0 through 9 and the letters
A through F.

MTT_Chapter9.indd Sec1:310MTT_Chapter9.indd Sec1:310 8/30/07 5:30:26 PM8/30/07 5:30:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 311

Figure 9-7
The ID Innovations ID12 RFID
reader attached to an FTDI USB-
to-serial adaptor. The ID12 has
pins spaced 2mm apart, so you’ll
need to solder wires onto them to
fit them on a breadboard. You can
also use the 2mm female sockets
used with the XBee modules, or
you can use SparkFun’s breakout
board.

MTT_Chapter9.indd Sec1:311MTT_Chapter9.indd Sec1:311 8/31/07 10:01:13 AM8/31/07 10:01:13 AM

www.it-ebooks.info

http://www.it-ebooks.info/

312 MAKING THINGS TALK

The sketch shown here
is a modification of the

Parallax sketch, with a new method,
parseString(). It reads the entire string,
confirms that the start and end bytes
are there, and strips out all but the
ten-byte tag ID. The changes to the
previous sketch are shown in blue:

/*

 ID Innovations RFID Reader

 language: Processing

*/

// import the serial library:

import processing.serial.*;

Serial myPort; // the serial port you're using

String tagID = ""; // the string for the tag ID

void setup() {

 size(600,200);

 // list all the serial ports:

 println(Serial.list());

 // based on the list of serial ports printed from the

 // previous command, change the 0 to your port's number:

 String portnum = Serial.list()[0];
 // initialize the serial port:

 myPort = new Serial(this, portnum, 9600);

 // incoming string from reader will have 16 bytes:

 myPort.buffer(16);

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 24);

 textFont(myFont);

}

void draw() {

 // clear the screen:

 background(0);

 // print the string to the screen:

 text(tagID, width/4, height/2 - 24);

}

/*

 this method reads bytes from the serial port

 and puts them into the tag string

 */

void serialEvent(Serial myPort) {

 // get the serial input buffer in a string:

 String inputString = myPort.readString();

 // filter out the tag ID from the string:

 tagID = parseString(inputString);

}

»

 Try It

MTT_Chapter9.indd Sec1:312MTT_Chapter9.indd Sec1:312 8/31/07 10:01:49 AM8/31/07 10:01:49 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 313

APSX RW-210 Reader
The APSX reader (Figure 9-8) has a totally different
format than the previous two. First, you have to send it a
command byte to start it reading. You can send it either a
byte of value 250 (0xFA), which causes it to read once, or
a byte of value 251 (0xFB), which causes it to read con-
tinually. The read-once option saves power, as it powers

Continued from opposite page.

/*

 This method reads a string and looks for the 10-byte

 tag ID. It assumes that it gets an STX byte (0x02)

 at the beginning and an ETX byte (0x03) at the end.

 */

String parseString(String thisString) {

 String tagString = ""; // string to put the tag ID into

 // first character of the input:

 char firstChar = thisString.charAt(0);

 // last character of the input:

 char lastChar = thisString.charAt(thisString.length() -1);

 // if the first char is STX (0x02) and the last char is ETX (0x03),

 // then put the next ten bytes into the tag string:

 if ((firstChar == 0x02) && (lastChar == 0x03)) {

 tagString = thisString.substring(1, 11);

 }

 return tagString;

}

the reader down once a tag is read. The tag ID returned
is 12 bytes long. The byte values are not limited to alpha-
numeric values, so the following sketch converts them to
ASCII-encoded hexadecimal values and separates them by
spaces for easy reading. Despite the different format, the
code is very similar to the Parallax reader sketch.

Changes from the Parallax
reader sketch are shown

in blue:

»

/*

 APSX RFID Reader

 language: Processing

*/

// import the serial library:

import processing.serial.*;

Serial myPort; // the serial port you're using

String tagID = ""; // the string for the tag ID

void setup() {

 size(600,200);

 // list all the serial ports:

 println(Serial.list());

 Try It

MTT_Chapter9.indd Sec1:313MTT_Chapter9.indd Sec1:313 8/31/07 1:18:26 PM8/31/07 1:18:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

314 MAKING THINGS TALK

Continued from previous page.

 // based on the list of serial ports printed from the

 // previous command, change the 0 to your port's number:

 String portnum = Serial.list()[0];
 // initialize the serial port:

 myPort = new Serial(this, portnum, 19200);

 // incoming string from reader will have 12 bytes:

 myPort.buffer(12);

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 24);

 textFont(myFont);

 // send the continual read command:

 myPort.write(0xFB);

}

void draw() {

 // clear the screen:

 background(0);

 // print the string to the screen:

 text(tagID, width/8, height/2 - 24);

}

/*

 this method reads bytes from the serial port

 and puts them into the tag string

 */

 void serialEvent(Serial myPort) {

 int thisByte = 0;

 tagID = "";

 while(myPort.available() > 0) {

 int newByte = myPort.read();

 tagID += hex(newByte, 2);

 tagID += " ";

 }

}

MTT_Chapter9.indd Sec1:314MTT_Chapter9.indd Sec1:314 8/31/07 10:02:58 AM8/31/07 10:02:58 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 315

Figure 9-8
The APSX RW-210 RFID reader
attached to an FTDI USB-to-serial
adaptor.

MTT_Chapter9.indd Sec1:315MTT_Chapter9.indd Sec1:315 8/31/07 10:03:17 AM8/31/07 10:03:17 AM

www.it-ebooks.info

http://www.it-ebooks.info/

316 MAKING THINGS TALK

Between my officemate and me, we have
dozens of devices drawing power in our
office: two laptops, two monitors, four or
five lamps, a few hard drives, a soldering
iron, Ethernet hubs, speakers, and so
forth. Even when we’re not here, the room
is drawing a lot of power. What devices
are turned on at any given time depends
largely on which of us is here, and what
we’re doing. This project is a system to
reduce our power consumption, particu-
larly when we’re not there.
 When either of us comes into the room,
all we have to do is throw our keys on a
side table by the door, and the room turns
on or off what we normally use. Each of us
has a key ring with an RFID-tag key fob.
The key table has an RFID reader in it, and
reads the presence or absence of the tags.

MATERIALS

1 solderless breadboard such as Digi-Key
(www.digikey.com) part number 438-1045-ND, or
Jameco (www.jameco.com) part number 20601.
For the photos in this example, I used an Arduino-
compatible Protoshield module from SparkFun,
part number DEV-07914.
1 Arduino module or other microcontroller
RFID reader Either the RFID Reader Module from
Parallax, part number 28140; the ID Innovations ID-
12 from CoreRFID or SparkFun part number SEN-
08419; or the APSX RW-210 from Trossen Robotics.
Two 2mm female header rows if you’re using the
ID12 reader, Samtec part number MMS-110-01-L-SV.
Samtec, like many part makers, supplies free
samples of this part in small quantities. SparkFun
sells these as part number PRT-08272. They also
sell a breakout board for the module, SparkFun part
number SEN-08423.
RFID tags Get the tags that match your reader.
All three of the retailers listed sell tags that match
their readers in a variety of physical packages, so
choose the ones you like the best.
Interface module: X10 One-Way Interface Module
from Smarthome (www.smarthome.com), part
number 1134B.
2 X10 modules Either: 2 Appliance Modules from
Smarthome, part number 2002, or 2 Powerhouse
X10 Lamp Modules from Smarthome, part number
2000. You’ll need two modules total. Choose one
of each, or two of one as you see fit. If you’re going
to control only incandescent lamps, get lamp
modules. For anything else, get appliance modules.
4-wire phone cable with RJ-11 connector
You can take this from any discarded phone,
or get one at your local electronics shop.

»

»
»

»

»

»

»

»

RFID Meets Home Automation

The reader is connected to a microcontroller module that
communicates over the AC power lines using the X10
protocol. Each of the various power strips is plugged into
an X10 appliance module. Depending on which tag is read,
the microcontroller knows which modules to turn on or off.
Figure 9-9 shows the system.

The Circuit
The RFID module is connected to the microcontroller as
you might expect: the module’s transmit pin connects to
the microcontroller’s receive. It’s basically the same circuit
as shown in the previous project with the X10 module
added. The X10 interface module connects to the micro-
controller via the phone cable. Clip one end of the cable
and solder headers onto the four wires. Then connect
them to the microcontroller as shown in Figure 9-10. The
schematic shows the phone jack (an RJ-11 jack) on the
interface module as you’re looking at it from the bottom.
Make sure the wires at the header ends correspond with
the pins on the jack from right to left.

I used an extra few inches of the phone cable to make
an extension cable for the RFID reader. You may or may
not need to, depending on how you plan to enclose the
electronics. Separating the two makes it easier to hide the
microcontroller and reader in two separate places, so the
antenna can get closer to what you need to read.

Project 24

MTT_Chapter9.indd Sec1:316MTT_Chapter9.indd Sec1:316 8/31/07 1:18:55 PM8/31/07 1:18:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 317

Figure 9-9
An RFID-controlled home
(or office) automation system
using X10.

To send X10 commands, use the X10 library for Arduino.
You can download it from www.arduino.cc/en/Tutorial/
X10. Unzip it and place the resulting directory in the lib/
targets/libraries/ subdirectory of your Arduino application
directory. Then restart the Arduino program.

X10 device addresses have a two-tier structure. There are
16 house codes, labeled A through P, and within each house
code, you can have 16 individual units. These are assigned
unit codes. Each X10 module has two click-wheels to set
the house code and the unit code. For this project, get at
least two appliance or lamp modules. Set the first module
to house code A, unit 1, and the second code A, unit 2.

NOTE: The X10 library may be already included with later versions

of Arduino, after version 0009. Check the Arduino website at

www.arduino.cc to be sure.

Microcontroller

RFID Reader

X10 Transmitter X10 Appliance
Module

X10 Lamp
Module

X10 Appliance
Module

TTL Serial

Sync Serial (X10)
X10 over AC

X10 over AC

AC

AC

Computer station
power strip

Computer station
power strip

Incandescent Lamp

AC

X10 over AC

The Code
Once you’ve got the circuit connected, program the micro-
controller to read the RFID tags, just to make sure that
works. A test sketch is shown next.

NOTE: You’ll probably need to disconnect the serial line between

the RFID reader and the Arduino in order to program the module,

as you did with the XPort and XBee modules in earlier chapters.

NOTE: You also need to set the serial monitor speed to 2400 bps

to match the speed this program uses. The default for the Arduino

serial monitor is 9600, and you can change it from a pop-up menu

in the serial monitor.

MTT_Chapter9.indd Sec1:317MTT_Chapter9.indd Sec1:317 8/31/07 10:04:17 AM8/31/07 10:04:17 AM

www.it-ebooks.info

http://www.it-ebooks.info/

318 MAKING THINGS TALK

X10 is a communications protocol that works over AC power

lines. It’s designed for use in home automation. Companies

such as Smarthome (www.smarthome.com) and X10.com

(www.x10.com) sell various devices that communicate over

power lines using X10: cameras, motion sensors, switch

control panels, and more. It’s a slow and limited protocol,

but has been popular with home automation enthusiasts for

years, because the equipment is relatively inexpensive and

easy to obtain.

X10 is basically a synchronous serial protocol, like I2C and

SPI. Instead of sending bits every time a master clock signal

changes, X10 devices send a bit every time the AC power

line crosses zero volts. This means that X10’s maximum

data rate is 120 bits per second in the U.S., as the AC signal

crosses the zero point twice per cycle, and AC signals are

60Hz in the U.S. The protocol is tricky to program if you

have to do it yourself, but many microcontroller develop-

ment systems include libraries to send X10 signals.

There are four devices that come in handy for developing

X10 projects: an interface module, an appliance control

module, a lamp control module, and a control panel module.

You’ll be building your own controllers, but the control panel

module is useful as a diagnostic tool, because it already

works. When you can’t get the appliance or lamp modules

to respond to your own projects, you can at least get them

to respond to the control panel module — that way, you

know whether the bits are passing over the power lines.

Smarthome sells versions of all four of these:

• Interface module: X10 One-Way Interface Module, part

number 1134B. You’ll see two common versions of this,

the PL513 and the TW523. They both work essentially the

same way. The TW523 is a two-way module, and can send

and receive X10 signals, while the PL513 can only send.

• Appliance control module: X10 Appliance Module 3-Pin,

part number 2002. These can control anything you can

plug into an AC socket, up to 15 Amps.

• Lamp control module: Powerhouse X10 Lamp Module,

part number 2000. These can control only incandescent

(not fl uorescent or neon) lamps.

• Control panel module: X10 Mini Controller, part

number 4030

What is X10?

MTT_Chapter9.indd Sec1:318MTT_Chapter9.indd Sec1:318 8/31/07 10:04:48 AM8/31/07 10:04:48 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 319

A

A. Data B. Zero crossing C. +5V

D. RFID TX E. RFID enable

B

C

D

Figure 9-10
The circuit for
the RFID-to-X10
project. The detail
shows the con-
nections on the
breadboard.

E

MTT_Chapter9.indd Sec1:319MTT_Chapter9.indd Sec1:319 8/31/07 10:05:08 AM8/31/07 10:05:08 AM

www.it-ebooks.info

http://www.it-ebooks.info/

320 MAKING THINGS TALK

This sketch reads in
bytes similar to the

Processing sketches earlier. The
readByte() method does all the work
with the serial data. It reads the first
byte, and if it’s the correct value, it
resets an array called tagID. It saves
the next ten bytes into the array. When
it gets the final byte, it changes a
variable called tagComplete so that the
rest of the program knows it can use
the tag array. You can use the same
code for the Parallax reader or the ID
Innovations reader; all you have to do
is change the startByte and endByte
values and the data rate.

/*

 RFID Reader

 language: Wiring/Arduino

*/

#define tagLength 10 // each tag ID contains 10 bytes

#define startByte 0x0A // for the ID Innovations reader, use 0x02

#define endByte 0x0D // for the ID Innovations reader, use 0x03

#define dataRate 2400 // for the ID Innovations reader, use 9600

char tagID[tagLength]; // array to hold the tag you read

int tagIndex = 0; // counter for number of bytes read

int tagComplete = false; // whether the whole tag's been read

void setup() {

 // begin serial:

 Serial.begin(dataRate);

}

void loop() {

 // read in and parse serial data:

 if (Serial.available() > 0) {

 readByte();

 }

 if(tagComplete == true) {

 Serial.println(tagID);

 }

}

/*

 This method reads the bytes, and puts the

 appropriate ones in the tagID

 */

void readByte() {

 char thisChar = Serial.read();

Serial.print(thisChar, HEX);

 switch (thisChar) {

 case startByte: // start character

 // reset the tag index counter

 tagIndex = 0;

 break;

 case endByte: // end character

 tagComplete = true; // you have the whole tag

 break;

 default: // any other character

 tagComplete = false; // there are still more bytes to read

 // add the byte to the tagID »

 Test It

MTT_Chapter9.indd Sec1:320MTT_Chapter9.indd Sec1:320 8/31/07 10:05:45 AM8/31/07 10:05:45 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 321

Continued from opposite page.

 if (tagIndex < tagLength) {

 tagID[tagIndex] = thisChar;

 // increment the tag byte counter

 tagIndex++;

 }

 break;

 }

}

/*

 X10 test

 language: Wiring/Arduino

*/

// include the X10 library files:

#include <x10.h>

#include <x10constants.h>

#define zcPin 9 // the zero crossing detect pin

#define dataPin 8 // the X10 data out pin

#define repeatTimes 1 // how many times to repeat each X10 message

 // in an electrically noisy environment, you

 // can set this higher.

// set up a new x10 library instance:

x10 myHouse = x10(zcPin, dataPin);

void setup() {

 // turn off all lights:

 myHouse.write(A, ALL_UNITS_OFF,repeatTimes);

}

void loop() {

 // turn on first module:

 myHouse.write(A, UNIT_1,repeatTimes);

 myHouse.write(A, ON,repeatTimes);

 myHouse.write(A, UNIT_2,repeatTimes);

 myHouse.write(A, OFF,repeatTimes);

 delay(500);

 // turn on second module:

 myHouse.write(A, UNIT_1,repeatTimes);

 myHouse.write(A, OFF,repeatTimes);

 myHouse.write(A, UNIT_2,repeatTimes);

 myHouse.write(A, ON,repeatTimes);

 delay(500);

}

When you know that works, run
this sketch to test the X10:

8

MTT_Chapter9.indd Sec1:321MTT_Chapter9.indd Sec1:321 8/31/07 10:06:06 AM8/31/07 10:06:06 AM

www.it-ebooks.info

http://www.it-ebooks.info/

322 MAKING THINGS TALK

It’s unlikely that this will work the first time.
X10 is notorious for having synchronization

problems, and it doesn’t work when the transmitter
and receiver are on different circuits. Some of the more
expensive surge protectors might filter out X10 as well.
If your lights don’t turn on correctly, start by unplugging
everything, then set the addresses, then plug everything

in, then reset the Arduino. If that fails, make sure that
your units are on the same circuit, and eliminate surge
protectors, if you’re using them. Try to turn the modules
using a control panel module. Once you’ve got control
over your modules, you can combine the RFID and the X10
programs.

First, combine the
initialization and

setup routines like so (be sure to set
tagOne and tagTwo to the values of
your tags):

/*

 RFID –to-X10 translator

 language: Wiring/Arduino

*/

// include the X10 library files:

#include <x10.h>

#include <x10constants.h>

#define zcPin 9 // the zero crossing detect pin

#define dataPin 8 // the X10 data out pin

#define repeatTimes 1 // how many times to repeat each X10 message

 // in an electrically noisy environment, you

 // can set this higher.

#define tagLength 10 // each tag ID contains 10 bytes

#define startByte 0x0A // for the ID Innovations reader, use 0x02

#define endByte 0x0D // for the ID Innovations reader, use 0x03

#define dataRate 2400 // for the ID Innovations reader, use 9600

// set up a new x10 library instance:

x10 myHouse = x10(zcPin, dataPin);

char tagID[tagLength]; // array to hold the tag you read

int tagIndex = 0; // counter for number of bytes read

int tagComplete = false; // whether the whole tag's been read

char tagOne[] = "0415AB6FB7"; // put the values for your tags here

char tagTwo[] = "0415AB5DAF";

char lastTag = 0; // value of the last tag read

void setup() {

 // begin serial:

 Serial.begin(dataRate);

 // turn off all lights:

 myHouse.write(A, ALL_LIGHTS_OFF,repeatTimes);

}

 Refine It

MTT_Chapter9.indd Sec1:322MTT_Chapter9.indd Sec1:322 8/31/07 1:19:34 PM8/31/07 1:19:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 323

The loop() method is a bit more
complex now. You need to add a block
to compare the RFID tag to the two
existing tag numbers. You’ll call a
method called compareTags() to do
this. This method just iterates over
the arrays and compares them byte
by byte. Once you’ve got a match, you
send the appropriate X10 commands.
Here’s the rest of the sketch:

8 void loop() {

 // read in and parse serial data:

 if (Serial.available() > 0) {

 readByte();

 }

 // if you've got a complete tag, compare your tag

 // to the existing values:

 if (tagComplete == true) {

 if (compareTags(tagID, tagOne) == true) {

 if (lastTag != 1) {

 // if the last tag wasn't this one,

 // send commands:

 myHouse.write(A, UNIT_1,repeatTimes);

 myHouse.write(A, ON,repeatTimes);

 myHouse.write(A, UNIT_2,repeatTimes);

 myHouse.write(A, OFF,repeatTimes);

 // note that this was the last tag read:

 lastTag = 1;

 }

 }

 if (compareTags(tagID, tagTwo) == true) {

 if (lastTag != 2) {

 // if the last tag wasn't this one,

 // send commands:

 myHouse.write(A, UNIT_1,repeatTimes);

 myHouse.write(A, OFF,repeatTimes);

 myHouse.write(A, UNIT_2,repeatTimes);

 myHouse.write(A, ON,repeatTimes);

 // note that this was the last tag read:

 lastTag = 2;

 }

 }

 }

}

/*

 this method compares two char arrays, byte by byte:

 */

char compareTags(char* thisTag, char* thatTag) {

 char match = true; // whether they're the same

 for (int i = 0; i < tagLength; i++) {

 // if any two bytes don't match, the whole thing fails:

 if (thisTag[i] != thatTag[i]) {

 match = false;

 }

 }

 return match;

} »

MTT_Chapter9.indd Sec1:323MTT_Chapter9.indd Sec1:323 8/31/07 10:06:50 AM8/31/07 10:06:50 AM

www.it-ebooks.info

http://www.it-ebooks.info/

324 MAKING THINGS TALK

Continued from previous page.

/*

 This method reads the bytes, and puts the

 appropriate ones in the tagID

 */

void readByte() {

 char thisChar = Serial.read();

 switch (thisChar) {

 case startByte: // start character

 // reset the tag index counter

 tagIndex = 0;

 break;

 case endByte: // end character

 tagComplete = true; // you have the whole tag

 break;

 default: // any other character

 tagComplete = false; // there are still more bytes to read

 // add the byte to the tagID

 if (tagIndex < tagLength) {

 tagID[tagIndex] = thisChar;

 // increment the tag byte counter

 tagIndex++;

 }

 break;

 }

}

When you run this code, you’ll see that the
RFID signals are slow enough that you can

actually see one complete before the other begins. It’s not
a good protocol for real-time interaction. The assumption
in this application is that the RFID tag is going to remain
in place for a long time, so a few seconds’ delay is not a
problem. However, this is where the reader’s behavior in
the presence of a tag makes a difference. The ID Innova-
tions reader doesn’t continue reporting tags if they remain
in the field, while the Parallax one does. With the Parallax
reader, you can detect not only the presence of a tag, but
also the absence. In this application, it means that you
can leave your key tag in the bowl as long as you want the
lights on, then remove it when you want them off.

None of the readers shown here features the ability to read
multiple tags if more than one tag is in the field. That’s an
important limitation. It means that you have to design the
interaction so that the person using the system places
only one tag at a time, then removes it before the second
one is placed. In effect, it means that two people can’t
place their key tags in the bowl at the same time. In other
words, users of the system need to take explicit action to
make something happen. Presence isn’t enough.
X

MTT_Chapter9.indd Sec1:324MTT_Chapter9.indd Sec1:324 8/31/07 10:07:17 AM8/31/07 10:07:17 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 325

Figure 9-11
The finished RFID reader bowl. A bamboo box
and dessert plate from a nearby gift shop made a
nice housing. Double-stick tape holds the reader
to the top of the box. A hole drilled in the back of
the box provides access for the X10 and power
cables.

MTT_Chapter9.indd Sec1:325MTT_Chapter9.indd Sec1:325 8/31/07 10:07:40 AM8/31/07 10:07:40 AM

www.it-ebooks.info

http://www.it-ebooks.info/

326 MAKING THINGS TALK

Network Identification
So far, you’ve identified network devices computationally by their address. For devices
on the Internet, you’ve seen both IP addresses and MAC addresses. Bluetooth and
802.15.4 devices have standard addresses as well. The address of a device doesn’t tell
you anything about what the device is or what it does.

Recall the networked air quality project in Chapter 4.
The microcontroller made a request via HTTP and the
PHP script sent back a response. Because you already
knew the microcontroller’s capabilities, you could send
a response that was short enough for it to process effi-
ciently, and format it in a way that made it easy to read.
But what if that same PHP script had to respond to HTTP
requests from an XPort, a desktop browser like Safari
or Internet Explorer, and a mobile phone browser? How
would it know how to format the information?

Most net communications protocols include a basic
exchange of information about the sender’s and receiver’s

identity and capabilities as part of the initial header
messages. You can use these to your advantage when
designing network systems like the ones you’ve seen
here. There’s not room here to discuss this concept
comprehensively, but following are two examples that
use HTTP and mail.

HTTP Environment Variables
When a server-side program, such as a PHP script,
receives an HTTP request, it has access to a lot more
information than you’ve seen thus far about the server,
the client, and more.

To see some of it, save the
following PHP script to your web
server, then open it in a browser.
Call it env.php:

8 <?php

/*

 Environment Variable Printer

 Language: PHP

 Prints out the environment variables

*/

 foreach ($_REQUEST as $key => $value)

 {

 echo "$key: $value
\n";

 }

 foreach ($_SERVER as $key => $value)

 {

 echo "$key: $value
\n";

 }

?>

MTT_Chapter9.indd Sec1:326MTT_Chapter9.indd Sec1:326 8/31/07 10:08:23 AM8/31/07 10:08:23 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 327

You should get something like this in your browser.

DBENTRY: /home/youraccountname/:d0000#CPU 6 #MEM 10240 #CGI

16734 #NPROC 12 #TAID 36811298 #WERB 0 #LANG 3 #PARKING 1

#STAT 1

DOCUMENT_ROOT: /home/youraccountname/

HTTP_ACCEPT: text/xml,application/xml,application/

xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/

*;q=0.5

HTTP_ACCEPT_CHARSET: ISO-8859-1,utf-8;q=0.7,*;q=0.7

HTTP_ACCEPT_ENCODING: gzip,deflate

HTTP_ACCEPT_LANGUAGE: en-us,en;q=0.5

HTTP_CONNECTION: keep-alive

HTTP_COOKIE: __utmz=152494652.1182194862.12.12.utmccn=(r

eferral)|utmcsr=www.someserver.com|utmcct=/~youraccount/

|utmcmd=referral; __utma=152494652.116689300.1180965223.1181

918391.1182194862.12; __utmc=152494652

HTTP_HOST: www.example.com

HTTP_KEEP_ALIVE: 300

HTTP_USER_AGENT: Mozilla/5.0 (Macintosh; U; Intel Mac OS X;

en-US; rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.4

PATH: /bin:/usr/bin

REDIRECT_DBENTRY: /home/youraccountname/:d0000#CPU 6 #MEM

10240 #CGI 16734 #NPROC 12 #TAID 36811298 #WERB 0 #LANG 3

#PARKING 1 #STAT 1

REDIRECT_SCRIPT_URI: http://www.example.com/php/09_env.php

REDIRECT_SCRIPT_URL: /php/09_env.php

REDIRECT_STATUS: 200

REDIRECT_UNIQUE_ID: RnfW1UrQECcAAFcpZ2w

REDIRECT_URL: /php/09_env.php

REMOTE_ADDR: 66.168.47.40

REMOTE_PORT: 39438

SCRIPT_FILENAME: /home/youraccountname/php/09_env.php

SCRIPT_URI: http://www.example.com/php/09_env.php

SCRIPT_URL: /php/09_env.php

SERVER_ADDR: 77.248.128.3

SERVER_ADMIN: webmaster@example.com

SERVER_NAME: example.com

SERVER_PORT: 80

SERVER_SIGNATURE:

SERVER_SOFTWARE: Apache/1.3.33 (Unix)

UNIQUE_ID: RnfW1UrQECcAAFcpZ2w

GATEWAY_INTERFACE: CGI/1.1

SERVER_PROTOCOL: HTTP/1.1

REQUEST_METHOD: GET

QUERY_STRING:

REQUEST_URI: /php/09_env.php

SCRIPT_NAME: /php/09_env.php

PATH_INFO: /php/09_env.php

PATH_TRANSLATED: /home/youraccountname/php/09_env.php

STATUS: 200

As you can see, there’s a lot of information there: the
web server’s IP address, the client’s IP address, the
browser type, the directory path to the script, and more.
You probably never knew you were giving up so much
information when you make a simple HTTP request, and
this is only a small part of it! This is very useful when you
want to write CGI scripts that can respond to different
clients in different ways.

MTT_Chapter9.indd Sec1:327MTT_Chapter9.indd Sec1:327 8/31/07 10:08:41 AM8/31/07 10:08:41 AM

www.it-ebooks.info

http://www.it-ebooks.info/

328 MAKING THINGS TALK

The next example uses the client’s IP address to get its latitude and longitude. It gets
this information from www.hostip.info, a community-based IP geocoding project. The
data there is not always the most accurate, but it is free. This script also uses the HTTP
user agent to determine whether the client is a desktop browser or a Lantronix device.
It then formats its response appropriately for each device.

IP Geocoding

Save this to
your server as

ip_geocoder.php:

»

<?php

/* IP geocoder

 language: PHP

 Uses a client's IP address to get a latitude and longitude.

 Uses the client's user agent to format the response.

*/

 // initialize variables:

 $lat = 0;

 $long = 0;

 $ipAddress = "0.0.0.0";

 $country = "unknown";

 // check to see what type of client this is:

 $userAgent = getenv('HTTP_USER_AGENT');

 // get the client's IP address:

 $ipAddress = getenv('REMOTE_ADDR');

 Locate It

The site www.hostip.info will return
the latitude and longitude from the
IP address. First, format the HTTP
request string and make the request.
Then wait for the results in a while loop,
and separate the results into the con-
stituent parts:

8 $IpLocatorUrl =

 "http://api.hostip.info/get_html.php?&position=true&ip=";

 $IpLocatorUrl = $IpLocatorUrl.$ipAddress;

 // make the HTTP request:

 $filePath = fopen ($IpLocatorUrl, "r");

 // as long as you haven't reached the end of the incoming text:

 while (!feof($filePath)) {

 // read one line at a time, and strip all HTML tags from the line:

 $line = fgetss($filePath, 4096);

 // break each line into fragments at the colon:

 $fragments = explode(":", $line);

 switch ($fragments[0]) {

 // if the first fragment is "country", the second

 // is the country name:

 case "Country":

 $country = trim($fragments[1]); // trim any whitespace:

 break;

Project 25

MTT_Chapter9.indd Sec1:328MTT_Chapter9.indd Sec1:328 8/31/07 10:09:05 AM8/31/07 10:09:05 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 329

Continued from opposite page.

 // if the first fragment is "Latitude", the second

 // is the latitude:

 case "Latitude":

 // trim any whitespace:

 $lat = trim($fragments[1]);

 break;

 // if the first fragment is "Longitude", the second

 //is the longitude:

 case "Longitude":

 // trim any whitespace:

 $long = trim($fragments[1]);

 break;

 }

 }

 // close the connection:

 fclose($filePath);

Now that you’ve got the location,
it’s time to find out who you’re
sending the results to, and format
your response appropriately. The
information you want is in the HTTP
user agent:

8 // decide on the output based on the client type:

 switch ($userAgent) {

 case "lantronix":

 // Lantronix device wants a nice short answer:

 echo "<$lat,$long,$country>\n";

 break;

 case "processing":

 // Processing does well with lines:

 echo "Latitude:$lat\nLongitude:$long\nCountry:$country\n\n";

 break;

 default:

 // other clients can take a long answer:

 echo <<<END

<html>

<head></head>

<body>

 <h2>Where You Are:</h2>

 Your country: $country

 Your IP: $ipAddress

 Latitude: $lat

 Longitude: $long

</body>

</html>

END;

 }

?>

MTT_Chapter9.indd Sec1:329MTT_Chapter9.indd Sec1:329 8/31/07 10:09:26 AM8/31/07 10:09:26 AM

www.it-ebooks.info

http://www.it-ebooks.info/

330 MAKING THINGS TALK

If you call this script from a browser, you’ll
get the HTML version. If you want to get the

“processing” or “lantronix” responses, you’ll need to send
a custom HTTP request. Try calling it from your terminal
program as follows:

First. connect to the server as you did before:

telnet example.com 80

Then send the following (press Enter one extra time
after you type that last line):

GET /~yourAccount/ip_geocoder.php HTTP/1.1

HOST: example.com

USER-AGENT: lantronix

You should get a response like this:

HTTP/1.1 200 OK

Date: Thu, 21 Jun 2007 14:44:11 GMT

Server: Apache/2.0.52 (Red Hat)

Content-Length: 38

Connection: close

Content-Type: text/html; charset=UTF-8

<40.6698,-73.9438,UNITED STATES (US)>

If you change the user agent from lantronix to processing,
you’ll get:

HTTP/1.1 200 OK

Date: Thu, 21 Jun 2007 14:44:21 GMT

Server: Apache/2.0.52 (Red Hat)

Content-Length: 64

Connection: close

Content-Type: text/html; charset=UTF-8

Latitude:40.6698

Longitude:-73.9438

Country:UNITED STATES (US)

As you can see, this is a powerful feature, and all you need
to do to use it is to add one line to your HTTP requests
from Processing or the microcontroller (see Chapter 3).
Just add an extra print statement to send the user agent,
and you’re all set. In Processing, the HTTP request would
now look like this:

 // Send the HTTP GET request:

 String requestString = "/~yourAccount/ip_geocoder.php”;

 client.write("GET " + requestString + " HTTP/1.0\r\n");

 client.write("HOST: example.com\r\n");

 client.write("USER-AGENT: processing\r\n\r\n");

The equivalent for Arduino would look like this:

 // Make HTTP GET request. Fill in the path to your version

 // of the CGI script:

 Serial.print("GET /~yourAccount/ip_geocoder.php HTTP/1.0\

r\n");

 // Fill in your server's name:

 Serial.print("HOST:example.com\r\n");

 // Print the user agent:

 Serial.print("USER-AGENT: lantronix\r\n\r\n");

Using the user agent variable like this can simplify your
development a great deal, because it means that you
can easily use a browser or the command line to debug
programs that you’re writing for any type of client.

Mail Environment Variables
Email can be a very flexible way to exchange messages
between objects, as well. It affords a more flexible rela-
tionship between objects than you get with IP addresses,
because it gives you the ability to structure complex con-
versations. An object can communicate not only who it is
(the from: address), but who it would like you to reply to
(using the reply-to: field), and whom you should include in
the conversation (cc: and bcc: fields). All of that informa-
tion can be communicated without even using the subject
or the body of the messages. PHP gives you simple tools
to do the parsing. Because so many devices communicate
via email (mobile phone text messaging can interface with
email as well), it expands the range of possible devices you
can add to a system.

Like HTTP, email protocols have environment variables
that you can take advantage of as well. If you’ve ever
viewed the full headers of an email in your favorite mail
client, you’ve seen some of these. To look at mail in more
depth, there’s a useful PHP extension library you can
use, called Net_POP3. It lets you retrieve mail from a mail
server and parse the whole exchange from server to client.
To use it, download it from pear.php.net/package/Net_
POP3. Unzip the downloaded file and copy the file POP3.
php to your server. (Depending on your server’s configura-
tion, you may need additional files; check the documenta-
tion for Net_POP3.)

MTT_Chapter9.indd Sec1:330MTT_Chapter9.indd Sec1:330 8/31/07 1:20:14 PM8/31/07 1:20:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 331

Put the following PHP
script on your server:

<?php

/*

 mail reader

 language: PHP

*/

include('POP3.php');

// keep your personal info in a separate file:

@include_once("pwds.php");

// new instance of the Net_POP3 class:

$pop3 =& new Net_POP3();

// connect to the mail server:

$pop3->connect($host , $port);

// send login info:

$pop3->login($user , $pass , 'APOP');

// get a count of the number of new messages waiting:

$numMsgs = $pop3->numMsg();

echo "<pre>\n";

echo "Checking mail...\n";

echo "Number of messages: $numMsgs\n";

// get the headers of the first message:

echo($pop3->getRawHeaders(1));

echo "\n\n\n";

echo "</pre>\n";

// disconnect:

$pop3->disconnect();

?>

 Send It

Next, make a separate file called
pwds.php on your server. This file
contains your username and password
info. Keep it separate from the main
PHP file so that you can protect it.
Format it like this:

As soon as you’ve saved the pwd.php
file, change its permissions so that only
the owner (you) can read and write
from it. From the command line, type:

chmod go-rwx pwd.php

8 <?php

$user=’username’; // your mail login

$pass=’password’; // exactly as you normally type it --

$host=’pop.example.com’; // usually pop.yourmailserver.com --

$port="110"; // this won't work on gmail.com and

 // other servers using SSL

?>

MTT_Chapter9.indd Sec1:331MTT_Chapter9.indd Sec1:331 8/31/07 10:10:21 AM8/31/07 10:10:21 AM

www.it-ebooks.info

http://www.it-ebooks.info/

332 MAKING THINGS TALK

NOTE: If you’re using a graphic SFTP or FTP client, your

settings for this file will look like Figure 9-12. This protection

will deter anyone who doesn’t have access to your account

from accessing your account info. It isn’t an ideal security

solution, but serves for demonstration purposes, and can be

made more secure by changing your password frequently.

Figure 9-12
Permissions for the pwds.php file. Make sure that no one
can read from and write to it — besides you.

You’ll need to make sure that you have at least
one unread mail message on your server for

that code to work. When you do, you should get something
like this when you open the script in a browser:

Checking mail...

Number of messages: 1

Return-Path:

Delivery-Date: Tue, 19 Jun 2007 15:08:33 -0400

Received-SPF: none (mxus2: 12.34.56.78 is neither

permitted nor denied by domain of www.example.com) client-

ip=12.34.56.78; envelope-from=apache@www.example.com;

helo=mx.example.com;

Received: from [12.34.56.78] (helo=mx.example.com)

 by mx.yourserver.com (node=mxus2) with ESMTP (Nemesis),

 id 0MKobQ-1I0j432Ui8-0002oD for youraccount@yourserver.

com; Tue, 19 Jun 2007 15:08:32 -0400

Received: from www.example.com (localhost [127.0.0.1])

 by www.example.com (8.13.1/8.13.1) with ESMTP id

l5JJ8UuJ029983

 for ; Tue, 19 Jun 2007 15:08:31 -0400

Received: (from apache@localhost)

 by www.example.com (8.13.1/8.13.1/Submit) id

l5JJ8Ua2029982;

 Tue, 19 Jun 2007 15:08:30 -0400

Date: Tue, 19 Jun 2007 15:08:30 -0400

Message-Id: <200706191908.l5JK8Ub2129982@www.example.com>

To: youraccount@yourserver.com

Subject: the cat

From: cat@catmail.com

Envelope-To: youraccount@yourserver.com

There’s a lot of useful information in this header. You can
see though the mail says it’s from cat@catmail.com, it’s
actually from a server that’s run by example.com. It’s
common to put an alias on the from: address, or to assign
a different reply-to: address than the from: address, or

both. It allows sending from a script such as the cat script
in Chapter 4, yet the reply goes a real person who can
answer it. It’s important to keep this in mind if you’re
writing scripts that reply to each other. If you were using
email to communicate between networked devices, the
program for each device must be able to tell the from:
address from the reply-to: address — otherwise, they
might not get each other’s messages.

This particular message doesn’t have a field called X-
Mailer:, though many do. X-Mailer tells you which program
sent the mail. For example, Apple Mail messages always
show up with an x-mailer of Apple Mail, followed by a
version number such as (2.752.3). Like the HTTP User
Agent, the X-Mailer field can help you to decide how to
format mail messages. You could use it in a similar fashion,
to tell something about the device that’s mailing you, so
you can format messages appropriately when mailing
back.

MTT_Chapter9.indd Sec1:332MTT_Chapter9.indd Sec1:332 8/31/07 10:10:52 AM8/31/07 10:10:52 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 333

This project shows you some of the possi-
bilities of email for communication, and of
using email headers for identification. It’s
an RFID reader that emails you when it’s
seen one of three tags. It can be used to
notify you when certain RFID-embedded
objects have been seen at a particular
location. For example, if the RFID reader
opened a door latch, you’d know whenever
people with the appropriate RFID-enabled
door tag had been at the door. For sim-
plicity’s sake, the system consists of an
RFID reader and a Lantronix module — in
this case, an XPort. You could easily add
a microcontroller to control other things
as well.

MATERIALS

1 solderless breadboard such as Digi-Key part
number 438-1045-ND, or Jameco part number
20601
1 RFID reader module from Parallax, part number
28140. With a little extra work, the project could be
modified to use one of the other readers mentioned
in this chapter.
3 RFID tags Get the tags that match your reader.
All three of the retailers listed here sell tags
that match their readers in a variety of physical
packages, so choose the ones you like the best.
1 Lantronix embedded device server Available
from many vendors, including Symmetry
Electronics (www.semiconductorstore.com) as part
number WM11A0002-01 (WiMicro) or XP1001001-
03R (XPort). This example uses an XPort.
1 RJ45 breakout board SparkFun part number
BOB-00716
1 3.3V regulator The LD1117-33V (SparkFun part
number COM-00526) or the MIC2940A-3.3WT
(Digi-Key part number 576-1134-ND) work well.
1 1µF capacitor Digi-Key part number P10312-ND
1 10µF capacitor SparkFun part number Comp-
10uF, or Digi-Key part number COM-00523
1 reset switch Any momentary switch will do. The
ones used here are SparkFun part number COM-
00097, or Digi-Key part number SW400-ND.
1 5V regulator The LM7805 series (SparkFun
part number COM-00107, Digi-Key part number
LM7805CT-ND) work well.
1 USB-to-TTL serial adaptor SparkFun’s BOB-
00718 from Chapter 2 can do the job. If you use
a USB-to-RS-232 adaptor such as a Keyspan or
Iogear dongle, refer to Chapter 2 for the schematics
to convert RS-232-to-5V TTL serial. You’ll use this
for configuring the XPort only. If you’ve got more
than one, it’ll be handy for troubleshooting, but you
won’t need one for the final project.

»

»

»

»

»

»

»
»

»

»

»

Email from RFID

NOTE: You’ll need an XPort, WiMicro, WiPort, or later for this

project; the Lantronix Micro can’t send mail by itself.

By sending an email notification, you get a lot of informa-
tion all at once, including:

• Which person you’re dealing with (based on the RFID
tag number)

• Which reader the person was at (based on the IP
address of the XPort that sends the mail)

• What time the person’s tag was read (based on the time
stamp of the email)

Though only one unit is described here, this project is
designed to be duplicated, so that you can get messages
from multiple locations. The system is shown in Figure
9-13. The RFID reader is connected to a Lantronix module.
The RFID reader sends serial data to the XPort, which
sends an email. The output is a PHP script that reads the
emails and displays the results.

Project 26

MTT_Chapter9.indd Sec1:333MTT_Chapter9.indd Sec1:333 8/31/07 10:11:12 AM8/31/07 10:11:12 AM

www.it-ebooks.info

http://www.it-ebooks.info/

334 MAKING THINGS TALK

Figure 9-14
The RFID emailer circuit.

MTT_Chapter9.indd Sec1:334MTT_Chapter9.indd Sec1:334 8/31/07 10:11:40 AM8/31/07 10:11:40 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 335

Figure 9-13
The RFID emailer system.

The Circuit
The circuit is fairly straightforward. The RFID reader’s
serial output is connected to the XPort’s serial receive pin.
The reader’s enable pin is connected to ground. That’s it.
Figure 9-14 shows the circuit.

To make this work, you’ll configure the XPort to send
emails. It can automatically generate an email to a
preset address when you send it a given serial string. To
determine the strings to send, you’ll need to read the tags
with the RFID reader first. To do this, connect the RFID
reader’s output to the USB-to serial adaptor’s input and
connect the reader’s enable pin to ground, as shown back
in Figure 9-6. Then connect the USB-to-serial adaptor to
your computer and open a serial terminal connection to
it at 2400 bps. When you wave the tags in front of it, you
should see strings like this:

0415AB6FB7

0415AB5DAF

0415AB5DAF

0F008F7CE8

0F008F7CE8

As you know from the previous projects, each unique
string represents a unique tag. Pick two characters that
are unique to each tag. In the example, you could use the

last two characters — B7, AF, and E8. The values will be
different for your tags. Write them down.

Now disconnect the RFID reader and connect the XPort to
the USB-to-serial adaptor as shown in Figure 9-15. Open a
serial terminal connection at 9600bps.

Hold down the x key on your keyboard and press the reset
button on the breadboard to reset the XPort. You’ll get the
usual configuration menu. Type 1 to get the serial setup
menu, and enter the following settings:

Baudrate (2400) ?

I/F Mode (4C) ?

Flow (00) ?

Port No (10001) ?

ConnectMode (D4) ?

Send '+++' in Modem Mode (N) ?

Auto increment source port (N) ?

Remote IP Address : (0) .(0) .(0) .(0)

Remote Port (0) ?

DisConnMode (00) ?

FlushMode (00) ?

DisConnTime (00:00) ?:

SendChar 1 (00) ?

SendChar 2 (00) ?

Then choose menu item 3 to set the email settings. The
XPort can be configured with your email address and
SMTP server, and can send up to three different email
notifications based on various events. It can send mail
based on incoming serial messages, or based on changes
on its configurable I/O pins. For this project, you’ll use
serial messages.

Unfortunately, the XPort expects the bytes you’ll send it
as hexadecimal values. This means that if you’re sending
the bytes shown earlier, for example, you’d need to convert
them from ASCII to hexadecimal as follows:

ASCII characters Hexadecimal values

“B7”

“AF”

“E8”

0x42, 0x37

0x41, 0x46

0x45, 0x38

Internet

PHP Script
reads mail,

parses out IP
and date

RFID Reader

XPortTTL Serial

email message

MTT_Chapter9.indd Sec1:335MTT_Chapter9.indd Sec1:335 8/31/07 10:12:17 AM8/31/07 10:12:17 AM

www.it-ebooks.info

http://www.it-ebooks.info/

336 MAKING THINGS TALK

Figure 9-15
XPort connected to a USB-to-serial adaptor.

MTT_Chapter9.indd Sec1:336MTT_Chapter9.indd Sec1:336 8/31/07 10:12:37 AM8/31/07 10:12:37 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 337

The first items you’ll need to set for menu item 3 are the
SMTP mail server IP and your login info. To get your mail
server’s numeric IP address, you can ping it. For example,
if your mail server is smtp.yahoo.com, open a terminal
window and type:

ping –c 2 smtp.yahoo.com

You’ll get a reply starting with a line containing the IP you
need:

PING smarthost.yahoo.com (216.145.54.172): 56 data bytes

Here are some initial mail settings for the XPort. Replace
these values with the appropriate ones for your server:

Mail server () ? (216) .(145) .(54) .(172)

Unit name () ? myAccountName

Domain name () ? example.com

Recipient 1 () ? myAccountName@example.com

Recipient 2 () ?

Once you’ve got the account set up, it’s time to set
the serial bytes that will trigger the messages, and the
messages themselves. Replace the hexadecimal values
shown here with your own values:

- Trigger 1

Enable serial trigger input (N) ? Y

 No. of bytes (2) ? 2

 Match (,) ? 42,37

Trigger input1 [A/I/X] (X) ?

Trigger input2 [A/I/X] (X) ?

Trigger input3 [A/I/X] (X) ?

Message () ? Tag one

Priority (L) ?

Next, set the minimum notification interval and the re-
notification interval. The former sets how many seconds
have to elapse at minimum between email messages.
Because the RFID reader reads repeatedly, set this interval
fairly high, so as not to flood the network with emails. The
renotification interval sets how soon the XPort should
repeat an email if it gets the same trigger string twice.
Again, set this fairly high:

Min. notification interval (1 s) ? 10

Re-notification interval (0 s) ? 20

Repeat the operation for messages 2 and 3, changing the
message itself and the trigger strings appropriately. Here

are my settings for messages 2 and 3:

Enable serial trigger input (N) ? Y

 No. of bytes (2) ? 2

 Match (,) ? 41,46

Message () ? Tag Two

Enable serial trigger input (N) ? Y

 No. of bytes (2) ? 2

 Match (,) ? 45,38

Message () ? Tag Three

When you’re finished, choose menu item 9 to save your
settings and reset the XPort.

NOTE: The XPort listens for the serial reset message (xxx) only at

9600 bps. So if you’re trying to get to the setup menu, make sure

that you’re connected to the serial port at 9600 bps. Because the

RFID reader needs to be at 2400 bps, you might accidentally open

the port at the wrong rate.

Now connect the RFID reader to the XPort, as shown in
Figure 9-14. Connect it to the Internet, power it up, and
wave a tag in front of the reader. Then check your email.
You should see a message like this:

From: myAccountName@example.com

Subject: Notification: Tag one

Date: June 21, 2007 6:11:59 PM EDT

To: myAccountName@example.com

When you get this email, you know everything’s working.
Try the other two tags. You should get a unique message
for each one.

You could duplicate this circuit for several locations, but
unless you set up an email address for each XPort, the
email from the XPorts all comes from the same account.
How would you know which XPort sent the mail? Easy:
check the IP address of the sender. Open the full header
and look for this string:

Received: from myAccountName ([12.34.56.78])

That IP address will be the IP address of your XPort. To
distinguish between different XPorts, you’d need a
program to look for the IP address of the sender. You could
get the identity of the person with the RFID tag from the
subject, and the time of the tag read from the email’s
timestamp. This gives you a pretty good picture of who
was where at what time.

MTT_Chapter9.indd Sec1:337MTT_Chapter9.indd Sec1:337 8/31/07 10:13:39 AM8/31/07 10:13:39 AM

www.it-ebooks.info

http://www.it-ebooks.info/

338 MAKING THINGS TALK

Following is a PHP script to
look for these messages.

It filters out all other mail messages
and just reports the notifications from
the XPort. It needs the same POP3.php
library and the same pwd.php file as the
previous program. Save it in the same
directory as rfid_mail_reader.php:

<?php

/*

 RFID mail reader

 language: PHP

 Parses a POP email box for a specific message from an XPort.

 The message looks like this:

 From: myAccountName@myMailhost.com

 Subject: Notification: Tag one

 Date: June 21, 2007 6:11:59 PM EDT

 To: myAccountName@myMailhost.com

*/

include('POP3.php');

// keep your personal info in a separate file:

@include_once("pwds.php");

echo "Checking mail...";

// New instance of the Net_POP3 class:

$pop3 =& new Net_POP3();

// Connect to the mail server:

$pop3->connect($host , $port);

// Send login info:

$pop3->login($user , $pass , 'APOP');

// Get a count of the number of new messages waiting:

$numMsgs = $pop3->numMsg();

echo "<pre>\n";

echo "Number of messages: $numMsgs\n";

// iterate over the messages:

for ($thisMsg = 1; $thisMsg <= $numMsgs; $thisMsg++) {

 // parse the headers for each message into

 // an array called $header:

 $header = $pop3->getParsedHeaders($thisMsg);

 // print the subject header:

 $subject = $header["Subject"];

 // look for the word "Notification" before a colon

 // in the subject:

 $words = explode(":", $subject);

»

 Try It

MTT_Chapter9.indd Sec1:338MTT_Chapter9.indd Sec1:338 8/31/07 10:13:57 AM8/31/07 10:13:57 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 339

Continued from opposite page.

 // only do the rest if this mail message is a notification:

 if ($words[0] == "Notification"){

 // get the second half of the subject; that's the tag ID:

 $idTag = $words[1];

 // print it;

 echo "$idTag showed up at address\t";

 /*

 the IP address is buried in the "Received" header.

 That header is an array. The second element contains

 who it's from. In that string, the IP is the first

 thing contained in square brackets. So:

 */

 // get the stuff in the right array element after the

 // opening square bracket:

 $receivedString = explode("[", $header["Received"][1]);

 // throw away the stuff after the closing bracket:

 $recdString2 = explode("]", $receivedString[1]);

 // what's left is the IP address:

 $ipAddress = $recdString2[0];

 // print the IP address:

 echo "$ipAddress at \t";

 // print the date header:

 $date = $header["Date"];

 echo "$date\t";

 echo "\n";

 }

}

echo "That's all folks";

echo "</pre>";

// disconnect:

$pop3->disconnect();

?>

When you open this in a browser, you
should get output like this:

Checking mail...

Number of messages: 234

Tag three showed up at address

12.34.56.78 at

 Thu, 21 Jun 2007 17:16:56 -0400 (EDT)

 Tag one showed up at address

12.34.56.89 at

 Thu, 21 Jun 2007 17:17:10 -0400 (EDT)

 Tag two showed up at address

12.34.56.78 at

 Thu, 21 Jun 2007 17:17:11 -0400 (EDT)

 Tag two showed up at address

12.34.56.89 at

 Thu, 21 Jun 2007 18:11:59 -0400 (EDT)

 Tag two showed up at address

12.34.56.89 at

 Thu, 21 Jun 2007 18:12:12 -0400 (EDT)

That's all folks

You can see that there were many more
messages than the script printed out (234

messages, only 5 shown here). You can also see that there
were two different XPorts reporting (12.34.56.78 and
12.34.56.89). Finally, you’ve got the time, location, and ID

of every tag that showed up in your system. You’ve got a
information about both identity and activity, just using the
headers of email messages.
X

MTT_Chapter9.indd Sec1:339MTT_Chapter9.indd Sec1:339 8/31/07 10:14:16 AM8/31/07 10:14:16 AM

www.it-ebooks.info

http://www.it-ebooks.info/

340 MAKING THINGS TALK

Conclusion
The boundary between physical identity
and network identity always introduces
the possibility for confusion and mis-
communication. No system for moving
information across that boundary is
foolproof. Establishing identity, capabil-
ity, and activity are all complex tasks, and
the more that you can incorporate human
input into the situation, the better your
results will be.

Security is essential when you’re transmitting identifying
characteristics, in order to maintain the trust of the people
using what you make and to keep them and yourself safe.
Once you’re connected to the Internet, nothing’s truly
private, and nothing’s truly closed, so learning to work
with the openness makes your life easier. In the end, keep
in mind that clear, simple ways of marking identity are
the most effective, whether they’re universal or not. Many
beginners and experienced network professionals often
get caught on this point, because they feel that identity
has to be absolute, and clear to the whole world. Don’t get
caught up in how comprehensively you can identify things
at first. It doesn’t matter if you can identify someone or
something to the whole world — it only matters that you
can identify them for your own purposes. Once that’s
established, you’ve got a foundation on which to build.

When you start to develop projects that use location
systems, you usually find that less is more. It’s not unusual
to start a project thinking you need to know position,
distance, and orientation, then pare away systems as you
develop the project. The physical limitations of the things
you build and the spaces you build them in will solve many
problems for you.
X

MTT_Chapter9.indd Sec1:340MTT_Chapter9.indd Sec1:340 8/31/07 10:14:38 AM8/31/07 10:14:38 AM

www.it-ebooks.info

http://www.it-ebooks.info/

IDENTIFICATION 341

MTT_Chapter9.indd Sec1:341MTT_Chapter9.indd Sec1:341 8/31/07 10:15:06 AM8/31/07 10:15:06 AM

www.it-ebooks.info

http://www.it-ebooks.info/

MTT_AppendixA.indd 342MTT_AppendixA.indd 342 8/31/07 11:58:34 AM8/31/07 11:58:34 AM

www.it-ebooks.info

http://www.it-ebooks.info/

And Another Thing
This book only touches the tip of the iceberg in terms of how you can

connect physical devices to networks. There are many tools and

applications that were left out because there wasn’t enough space

to explain them adequately. Other tools came on the market as I was

writing, leaving not enough time to try them out thoroughly enough

to write about them. Still others were left out because they were similar

to the main tools described already. Following is a collection of pieces

that didn’t make the main text, but that still may be useful to you as

you’re networking physical objects.

Appendix A
MAKE: PROJECTS

MTT_AppendixA.indd 343MTT_AppendixA.indd 343 8/31/07 11:59:02 AM8/31/07 11:59:02 AM

www.it-ebooks.info

http://www.it-ebooks.info/

344 MAKING THINGS TALK

Other Useful Protocols
There are many more useful protocols than have been covered. Here are a few that you
might run across, along with some notes on where to begin learning about them.

MIDI
The Musical Instrument Digital Interface (MIDI) protocol
is a protocol for real-time communication between digital
musical instruments. It’s the granddaddy of digital
synthesizer protocols. Most music synthesizers, sequenc-
ers, samplers, keyboards, and workstations on the market
today speak MIDI. If you plan to make music using hardware,
you’re going to run across it. It’s a serial protocol running
at 31,250 bps. There’s a standard MIDI connector called
a DIN5 connector that you’ll find on all MIDI gear. All the
connectors on the gear are female plugs, and the cables all
have male connectors on both ends. Figure A-1 shows the
MIDI connector and a simple MIDI output circuit from an
Arduino board. You can find hundreds of examples of how
to send and receive MIDI data online.

MIDI messages are divided into three or more bytes. The
first byte, a command byte, is always greater than 127
in value. Its value depends on the command. The bytes
that follow it are called status bytes. All status bytes
have values less than 128. This makes it possible to tell a
command byte from a status byte by the value alone.

There are a number of different MIDI commands. The
most basic, note on and note off messages, control the
playing of notes on 16 different channels of a synthesizer.
Each note on or note off command contains two status
bytes, specifying the pitch in a range from 0 to 127, and the
velocity (how hard the note should be struck) from 0 to
127. Pitch value 69 is defined as A above middle C (A440)
by the general MIDI specification. The general MIDI spec
also covers the instruments that you’re likely to find on
each channel.

As MIDI instruments, channels, and banks of sounds are
grouped in groups of 16, MIDI messages are generally
written in hexadeximal notation. This makes it easy to
read commands based on the value. For example, 0x80 to
0x8F are all note off messages, 0x90 to 0x9F are all note
on messages. 0x90 is note on channel 1, 0x91 is note on
channel 2, and so forth.

For more information on MIDI, see Paul D. Lehrman and
Tim Tully’s book MIDI for the Professional (Amsco, 1993).

Here is the “Hello World!” of MIDI,
a program to send MIDI notes to a
synthesizer. It plays notes. To use it,
build the circuit as shown, connect it to
a MIDI synth, and connect the synth to
an amplifier and speakers.

8 /*

 MIDI

 Language: Wiring/Arduino

 plays MIDI notes from 30 to 90 (F#-0 to F#-5)

*/

char note = 0; // The MIDI note value to be played

void setup() {

 // Set MIDI baud rate:

 Serial.begin(31250);

}

void loop() {

 // play notes from F#-0 (30) to F#-5 (90):

 for (note = 0; note < 127; note ++) {

 // Note on channel 1 (0x90), some note value (note), middle velocity

 // (0x45): »

MTT_AppendixA.indd 344MTT_AppendixA.indd 344 8/31/07 11:59:23 AM8/31/07 11:59:23 AM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A 345

Figure A-1
MIDI output from a microcontroller.

MTT_AppendixA.indd 345MTT_AppendixA.indd 345 8/31/07 11:59:42 AM8/31/07 11:59:42 AM

www.it-ebooks.info

http://www.it-ebooks.info/

346 MAKING THINGS TALK

Continued from previous page.

 noteOn(0x90, note, 0x70);

 delay(10);

 //Note on channel 1 (0x90), some note value (note), silent velocity (0x00):

 noteOn(0x90, note, 0x00);

 delay(10);

 }

}

// plays a MIDI note. Doesn't check to see that

// cmd is greater than 127, or that data values are less than 127:

void noteOn(char cmd, char data1, char data2) {

 Serial.print(cmd, BYTE);

 Serial.print(data1, BYTE);

 Serial.print(data2, BYTE);

}

OpenSound Control (OSC)
OpenSound Control (OSC) was created as a successor to
MIDI. MIDI is aging as a protocol. As it’s been expanded
to other uses, MIDI’s limitations have become more
apparent. Compared to modern protocols, MIDI’s data rate
is relatively low. Furthermore, MIDI doesn’t travel well over
packet networks. OSC was designed to be implemented
over many transport protocols, from serial to UDP to
whatever comes next. When formatting OSC messages,
you define an address space to define the device. For
example, you can use OSC to control the MAKE controller
(described later in this appendix). Each set of functions
has an address. For example, to read the third analog input
channel, the address space would be:

/analogin/2/value

The controller would then send you back the value of that
analog channel. OSC is designed to be flexible enough
to allow for control of devices that haven’t even been
invented yet. Because you define the address space, you
can define any set of devices and functions that you want.

OSC has been implemented on many different platforms,
including Flash, PHP, C, C++, Java, Max/MSP, PD, Process-
ing and more. Though there’s not yet an official library for
OSC in Wiring or Arduino, there may be soon. For more
information on OSC, see the OSC homepage at www.
cnmat.berkeley.edu/OpenSoundControl/.

Exemplar (shown in Figure A-2) is a toolkit for prototyp-
ing physical devices that uses OSC to communicate with
various microcontroller modules. It allows you to read data
from the microcontroller and prototype onscreen applica-
tions that use that data without having to write a lot of
code. The Exemplar firmware for Arduino is a good simple
example of how to implement OSC in code. For more on
Exemplar, including code to communicate from Wiring
and Arduino to Exemplar using OSC, see hci.stanford.edu/
research/exemplar/. It’s both an analysis tool and a proxy
tool, like those covered further on.

DMX512
DMX512 is a real-time serial protocol for communicat-
ing between stage-lighting control systems and lighting
dimmers. It has been the industry standard for stage
lighting and show control equipment for a couple of
decades now. It’s also used to control special effects
machines, moving lights, projection systems, and more.
It’s fast for a serial protocol, at 250 kbps; fast enough
that you can’t just send regular serial data from a micro-
controller. There are a few examples online as to how to
send DMX512 from microcontrollers, though. Numerous
examples for the PIC microcontrollers exist, and pointers
for implementing it on Arduino can be found on the
Arduino playground site at www.arduino.cc/playground/
Learning/DMX. For more on DMX, see www.opendmx.net.
Like MIDI, DMX is aging as a protocol. The lighting industry
has started to develop its successor, Advanced Controller

MTT_AppendixA.indd 346MTT_AppendixA.indd 346 8/31/07 12:00:11 PM8/31/07 12:00:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A 347

Figure A-2
The Exemplar interface. You can view the outputs of sensors on
time graphs, filter them, match patterns, and have those patterns
generate messages that can be sent to other applications.

Network, or ACN, which can run over Ethernet. Over the
next few years, you can expect to see it grow in promi-
nence. For more on show control protocols in general, John
Huntington’s book Control Systems for Live Entertainment
(Focal Press, 2007) can’t be beat.
X

Proxies of All Kinds
Many of the software programs you’ve written in this book are basically proxies, con-
verting one form of communication to another. There are a number of useful programs
on the market that convert from one protocol to another in order to enable two devices
that don’t speak the same language to communicate. Here are a few examples.

Network Serial Proxy
One of the most common tasks in networked projects
is converting a stream of serial data to a network TCP
stream. Most developers of physical computing projects
have written their own network serial proxy, so there are
many examples to look at. It’s a particularly useful thing to

do when you want to communicate between applications
that can’t access a serial port, like Adobe Flash, and a
microcontroller. The next page shows just such a proxy.

MTT_AppendixA.indd 347MTT_AppendixA.indd 347 8/31/07 12:00:30 PM8/31/07 12:00:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

348 MAKING THINGS TALK

Here’s a very basic proxy
sketch written in Processing that
works with Flash. It will work
with other applications, too, but
it’s optimized for ActionScript’s
XMLSocket class, which expects
every message to be wrapped in
bytes of value 0.

8 /*

 Serial Server

 language: processing

 This program makes a connection between a serial port

 and a network socket.

*/

import processing.serial.*;

import processing.net.*;

int socketNumber = 9001; // the port the server listens on

Server myServer; // the server

Client thisClient; // the reference to the client that logs

char terminationString = '\0'; // zero terminator byte

Serial myPort; // the serial port you're using

String portnum; // name of the serial port

String outString = ""; // the string being sent out the serial port

String inString = ""; // the string coming in from the serial port

String socketString = ""; // string of bytes in from the socket

int receivedLines = 0; // how many serial lines have been received

int bufferedLines = 5; // number of incoming lines to keep

void setup() {

 size(400, 300); // window size

 // create a font with a font available to the system:

 PFont myFont = createFont(PFont.list()[2], 14);

 textFont(myFont);

 // list all the serial ports:

 println(Serial.list());

 // based on the list of serial ports printed from the

 //previous command, change the 0 to your port's number:

 portnum = Serial.list()[0];

 // initialize the serial port:

 myPort = new Serial(this, portnum, 9600);

 // buffer until a newLine:

 myPort.bufferUntil('\n');

 // start the server:

 myServer = new Server(this, socketNumber); // Starts a server

}

void draw() {

 // clear the screen:

 background(0);

 // print the name of the serial port: »

MTT_AppendixA.indd 348MTT_AppendixA.indd 348 8/31/07 12:00:50 PM8/31/07 12:00:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A 349

Continued from opposite page.

 text("Serial port: " + portnum, 10, 20);

 // Print out what you get:

 text("From serial port:\n" + inString, 10, 80);

 text("From socket:\n" + socketString, 200, 80);

 // if the client is not null, and says something, display

 // what it said:

 if (thisClient !=null) {

 // print out the current client:

 text("Active client: " + thisClient.ip(), 10, 60);

 // read what the client said:

 String whatClientSaid = thisClient.readString();

 if (whatClientSaid != null) {

 // save what it said to print to the screen:

 socketString = whatClientSaid;

 // send what it said out the serial port:

 myPort.write(socketString);

 }

 }

}

// this method runs when bytes show up in the serial port:

void serialEvent(Serial myPort) {

 // read the String from the serial port:

 String whatSerialSaid = myPort.readStringUntil('\n');

 if (whatSerialSaid != null) {

 // save what it said to print to the screen:

 inString = whatSerialSaid;

 // if there is a netClient, send the serial stuff to them:

 if (thisClient != null) {

 // put a zero byte before and after everything you send to Flash:

 thisClient.write(terminationString);

 // send the actual text string:

 thisClient.write(inString);

 // add the end zero byte:

 thisClient.write(terminationString);

 }

 }

}

void serverEvent(Server myServer, Client someClient) {

 if (thisClient == null) {

 // don't accept the client if we already have one:

 thisClient = someClient;

 }

}

MTT_AppendixA.indd 349MTT_AppendixA.indd 349 8/31/07 12:01:10 PM8/31/07 12:01:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

350 MAKING THINGS TALK

Here’s a sample of Action-
Script to test it with. Paste

this into the action window in the first
frame of a new Flash movie and run it.
Thanks to Dan O’Sullivan for this code:

/*

 Socket Test

 Language: ActionScript 2.0

 Exchanges strings through an XMLSocket

*/

var i = 0; // counter for the number of clicks

createSocket();

function createSocket() {

 socket = new XMLSocket();

 // 127.0.0.1 is the same as "localhost"

 // i.e. an alias to your local machine

 socket.connect("127.0.0.1",9001);

 // define the functions that get called when these events happen:

 socket.onConnect = success;

 socket.onClose = closed;

 socket.onData = newData;

}

// when you click on the screen, Flash sends a click out

// the server port:

function onMouseUp() {

 trace("click");

 socket.send("click ");

 socket.send(i);

 i++;

}

function success() {

 trace("socket opened");

 socket.send("F\n"); // tell proxy it is talking to Flash

}

function closed() {

 trace("socket closed");

 socket.send("Q\n"); // tell proxy that Flash is closing socket

}

function newData(inString) {

 trace(inString); // trace the packet of data to the Flash

 // output screen

}

Try It

MTT_AppendixA.indd 350MTT_AppendixA.indd 350 8/31/07 12:01:29 PM8/31/07 12:01:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A 351

Figure A-3
The Tinker.it AppleScript proxy. Any character coming in the
serial port can be assigned to an AppleScript command.

Figure A-4
Griffin Proxi. Connections are made by pulling triggers
and tasks from their bins to the main window and setting
their characteristics.

Other Proxy Programs
There are numerous programs on the Web that act as
proxies, receiving messages from one source and passing
it to another. Following are a few that are popular among
physical computing enthusiasts.

TinkerProxy
The folks at Tinker.it have written a useful application for
Mac OS X that receives serial information and generates
AppleScript events for Mac OS X. This app (Figure A-3)
allows you to control nearly any application on a Macintosh,

MTT_AppendixA.indd 351MTT_AppendixA.indd 351 8/31/07 12:01:47 PM8/31/07 12:01:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

352 MAKING THINGS TALK

as most applications have at least rudimentary AppleScript
controls. They’ve also written TinkerProxy, a TCP-to-serial
proxy for Windows. See tinker.it/now/category/software/
for more details.

NADA
Sketchtools NADA is a proxy tool that takes in MIDI, serial
OSC, and other messages and sends them out to various
development environments like Flash, or Java. Originally
designed to work with the Phidgets line of hardware tools,
it can work with the MAKE Controller, MakingThings’
earlier Teleo tools, any MIDI device, and many others as
well. See www.sketchtools.com for more details.

Griffin Proxi
Griffin Proxi (Figure A-4, preceding page) is a tool that runs
various operating system tasks in Mac OS X in response

Mobile Phone Application Development
Mobile phone development is limited by a number of factors. To begin with, there are
many more phone operating systems than there are desktop operating systems. This
makes portability of software difficult. The learning curve for beginners is an order of
magnitude greater than what you’ve encountered here. In addition to that, access to
both the network and to many features of the phones is often limited by the mobile
service providers. For these reasons, I didn’t include mobile phones in this book, even
though they are an exciting platform for these kinds of applications.

If you’re interested in mobile phone application develop-
ment, look into phones running the Symbian Series 60
operating system. Linux is beginning to make a strong
showing on phones, too. Most of these are Nokia phones.
They can run the Java Micro Edition (formerly called J2ME,
now Java ME), which is a powerful and fairly accessible
toolkit for phone programming. There is a limited variation
of Processing called Mobile Processing that runs on these
phones as well as most Java-capable phones. In addition,
there is a version of the Python scripting language. Python
for Series 60 is exciting, because it allows you access to
features of the phone that Java and Mobile Processing
don’t. For example, you can make phone calls and find the
cell tower ID using Python. If you know Adobe’s Flash pro-
gramming environment, you should look into Flash Lite,
which runs on mobile phones as well.

The most productive approaches to mobile phone devel-
opment lie in three directions: developing for the browser,
for SMS, and for voice and touchtone connections. For
the browser, you can use WAP/WML (Wireless Applica-
tion Protocol/Wireless Markup Language), or you can
use HTML. Because SMS messages can travel across
email servers, you can use the POP, IMAP, and SMTP mail
protocols you saw earlier in this book to send and transmit
them. Asterisk is an open-source private branch exchange
(PBX) for managing telephony, allowing you to make and
receive audio phone calls from a server.

to events like a mouse click, keyboard hit, incoming email,
and more. You can use it to generate screen messages,
make sounds, run AppleScripts, write to files and send
email and test messages from various hardware devices
connected to your computer. See proxi.griffintechnology.
com for more details.

Girder
Girder is an operating system automator for Windows
that lets you generate serial, network and X10 events
from operating system events. Like the others, it makes
it possible to connect various operating system events
with network and serial messages without programming.
See www.girder.nl for details.
X

MTT_AppendixA.indd 352MTT_AppendixA.indd 352 8/31/07 12:02:11 PM8/31/07 12:02:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A 353

Here’s a PHP script that runs on most
web-enabled phones. It identifies the
user agent and IP address and mails it
back to you. It’s a useful diagnostic tool
for finding phones and knowing their
browsers. To use this, save this PHP
script to your server, then open the
script in a browser on your phone:

 HTTP User Agent
 for Phones

<?php

/*

 Phone Finder

 Language: PHP

 Identifies the user agent and IP address and sends an email

 notification. Runs on mobile phones.

*/

 $userAgent = getenv('HTTP_USER_AGENT');

 $ipAddress = getenv('REMOTE_ADDR');

 sendMessage('you@example.com', 'user agent',

 "$userAgent $ipAddress");

 echo <<<END

<html>

<head></head>

<body>

 <h2>Hi There</h2>

 Your IP: $ipAddress

 Your browser: $userAgent

 Thanks!

</body>

</html>

END;

 end;

function sendMessage($to, $subject, $message) {

 $from = "phone@example.com";

 mail($to, $subject, $message, "From: $from");

}

 ?>

Browsers on the Phone
Because most mobile phones on the market as of this
writing have at least a rudimentary web browser, you can
develop web applications for them. Some of them use
WAP/WML only, but increasingly many of them can read
plain old HTML. The functionality of low-end phones is
limited, so it’s not wise to do lots of graphics-heavy pages,

but you can easily browse text pages with a few small
graphics on a phone. Any of the HTML pages generated by
the PHP scripts in this book should be viewable on most
mobile phones. You can even customize the HTML output
for mobile phones by reading the HTTP User Agent as you
saw in Chapter 9, and outputting a special page for mobile
phone browsers.

MTT_AppendixA.indd 353MTT_AppendixA.indd 353 8/31/07 12:02:29 PM8/31/07 12:02:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

354 MAKING THINGS TALK

You’ll get a number of different replies. Here are some
examples:

Mozilla/5.0 (SymbianOS/9.1; U; en-us) AppleWebKit/413

(KHTML, like

 Gecko) Safari/

NokiaN73-1/2.0628.0.0.1 S60/3.0 Profile/MIDP-2.0

Configuration/

 CLDC-1.1

NokiaN93-1/20.0.058 SymbianOS/9.1 Series60/3.0 Profile/

MIDP-2.0

 Configuration/CLDC-1.1

Nokia6230/2.0 (05.51) Profile/MIDP-2.0 Configuration/

CLDC-1.1

 UP.Link/6.3.0.0.0

BlackBerry8100/4.2.0 Profile/MIDP-2.0 Configuration/CLDC-1.1

 VendorID/100

BlackBerry7290/4.1.0 Profile/MIDP-2.0 Configuration/CLDC-1.1

 VendorID/100 216.9.250.99

LGE-PM325/1.0 UP.Browser/6.2.3.2 (GUI) MMP/2.0

Palm680/RC1 Mozilla/4.0 (compatible; MSIE 6.0; Windows 98;

 PalmSource/Palm-D053; Blazer/4.5) 16;320x320

UP.Link/6.3.0.0.

Mozilla/2.0 (compatible; MSIE 3.02; Windows CE; PPC;

240x320)

 BlackBerry8100/4.2.0 Profile/MIDP-2.0 Configuration/

CLDC-1.1

 VendorID/100

Mozilla/4.0 (compatible; MSIE 6.0; Windows 98; PalmSource/

Palm-D052;

 Blazer/4.5) 16;320x320 68.28.123.118

SAMSUNG-SGH-A707/1.0 SHP/VPP/R5 NetFront/3.3 SMM-MMS/1.2.0

 profile/MIDP-2.0 configuration/CLDC-1.1 UP.Link/6.3.0.0.0

209.183.32.17

Mozilla/4.0 (MobilePhone RL-4920/US/1.0) NetFront/3.1

MMP/2.0

Mozilla/4.0 Sprint:MotoQ (compatible; MSIE 4.01; Windows CE;

 Smartphone; 176x220)

As you can see, there’s a wide variety of mobile phone
browsers out there, so telling what’s a phone and what’s
not can be a challenge. That’s a good reason to keep your
display output simple if you’re planning for it to be seen on
mobile phones. Some of the browsers conveniently report
their screen size. For example, the final one here, a MotoQ,
has a screen size of 176 x 220. For more information on
the capabilities of various handsets, check out the WURFL
project at wurfl.sourceforge.net.

SMS Text Messaging
SMS is an easy way to get and receive messages from
mobile phones, because it’s just email, from a server’s point
of view. Sending an email from a mobile phone via SMS
varies with each carrier, but it generally works like this.
Type in the short code that your carrier uses for sending
email via SMS. You can get this from the carrier’s website.
For example, T-Mobile in the United States uses the
shortcode 500. Verizon just requires you to send directly
to the email address. Each carrier is different, but here’s
a general approach:

1. Type the email address you want to send to, followed
by a space.

2. Type in the subject line, followed by a space.
3. Type # then the body of the message.
4. Hit send.
5. Check your email for the message.

So on my T-mobile phone, I type:

To: 500

you@yourmailserver.com hello there #this is the body

In your mail, you should receive:

From: 19175555555@tmomail.net

To: you@yourmailserver.com

Subject: hello

this is the body

You can parse these messages just like mail using the
PHP NET_POP3 class.

Sending text messages is just as easy. You need to know the
carrier’s mail domain, which you can get from the carrier’s
website. Here are a few of the U.S. carriers’ mail domains,
as of this week. Mergers and acquisitions could make these
domains incorrect by the time you read this, so check with
your carrier. Replace the number with your own:

T-Mobile: 12225555555@tmomail.net

Sprint: 12225555555@messaging.sprintpcs.com

Verizon: 12225555555@vtext.com

AT&T: 12225555555@txt.att.net

Nextel: 12225555555@messaging.nextel.com

MTT_AppendixA.indd 354MTT_AppendixA.indd 354 8/31/07 12:02:48 PM8/31/07 12:02:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A 355

<?php

/*

 SMS messenger

 Language: PHP

 Sends SMS messages

*/

 $phoneNumber = $_GET["phoneNumber"]; // get the phone number

 $carrier = $_GET["carrier"]; // get the carrier

 $message = $_GET["message"]; // get the message

 $recipient = $phoneNumber."@".$carrier; // compose the recipient

 // if there's a phone number in the form, you can send:

 if ($phoneNumber != null) {

 // send the message:

 $from = "you@yourmailhost.com";

 mail($recipient, "Mail message", $message, $from);

 }

 // finally, print the browser form:

 echo <<<END

<html>

<head></head>

<body>

 <h2>SMS Messenger</h2>

 <form name="txter" lookupMethod="post" action="sms.php">

 Phone number: <input type="text" name="phoneNumber"

 size='15' maxlength='15'>

 Message: <input type="text" name="message" size='30'

 maxlength='128'>

 Carrier: $to

 <select name="carrier">

 <option value="teleflip.com">Teleflip</option>

 <option value="tmomail.net">T-Mobile</option>

 <option value="messaging.sprintpcs.com">Sprint</option>

 <option value="txt.att.net">AT&T</option>

 <option value="vtext.com">Verizon</option>

 <option value="messaging.nextel.com">Nextel</option>

 </select>

 <input type="submit" name="Submit" value="submit">

 </form>

</body>

</html>

END;

?>

To send an SMS, just send
mail to the ten-digit phone

number at the recipient's carrier.
Here’s a PHP script to send yourself an
SMS. Save this as sms.php:

Consider password-protecting

this script, or removing it after you’re

done testing. It could become the

target of abuse if it’s found by a roving

spambot with a pocket full of phone

numbers.

!

There’s an extra carrier in the list of
carriers in that code that you may not
be familiar with. Teleflip (www.teleflip.
com) is a text message aggregator
service. It allows you to send to any
U.S. 10-digit phone number by sending
to number@teleflip.com. This frees you
from having to look up the carriers’
mail host names.

Try It

MTT_AppendixA.indd 355MTT_AppendixA.indd 355 8/31/07 12:03:08 PM8/31/07 12:03:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

356 MAKING THINGS TALK

Asterisk
Asterisk is an open source private branch telephone
exchange (PBX). It allows you to manage a phone
exchange over an IP network. It can make and take phone
calls, save messages, play prerecorded messages to
people who call in, and offers most of the usual features
a phone account does, like caller ID, call waiting, call
blocking, and so forth. You can also make connections
between the phone and the Internet. For example, you can
allow users to control the output of a PHP script using
their touchtone keypad. It’s not a large step from there
to having a mobile phone keypad controlling a physical
object through a Lantronix device, XBee radio, or any of
the other tools you’ve seen here. It runs on a Unix or Linux

server. Asterisk isn’t easy for the beginner, but it’s manage-
able by anyone comfortable with server-side programming
like the PHP you’ve seen here. For more details on Asterisk,
see www.asterisk.org.

The mobile phone development landscape is changing
rapidly at the moment, and by the time you’re reading this,
there are likely many more tools for developing on phones,
and for using phones as a user interface to networks in
nontraditional ways. If you’ve enjoyed making embedded
systems talk to each other, then by all means, jump into
mobile phone programming as well.
X

Other Microcontrollers
Though the examples in this book have all been done using Arduino and Wiring, there
are many other microcontroller platforms that you can use to do the same work. This
section is an introduction to a few others on the market, and what they’re good for.
Some of these are standalone controllers that you program yourself, as you’ve done
with the controllers in this book. Others are designed to be connected to a personal
computer at all times. You don’t have to program these, you just configure them via
serial or Ethernet, then read from their inputs and write to their outputs from your
desktop-based development environment.

Basic Stamp
Parallax (www.parallax.com) Basic Stamp and Basic
Stamp 2 (BS-2) are probably the most common microcon-
trollers in the hobbyist market. Programmed in PBASIC,
they are easy to use, and include the same basic functions
as Wiring and Arduino: digital in and out, serial in and out,
PWM out, and a form of analog in. Their analog in is slower
than an analog-to-digital converter, however. In addition,
PBASIC lacks the ability to pass parameters to functions,
which makes programming many of the examples shown
in this book more difficult. It’s possible to do everything
you’ve seen here on a Basic Stamp, however. And there
are more code samples available on the Net for the BS-2
than for just about any other controller.

BX-24
NetMedia’s BX-24 controller (www.basicx.com) affords
everything that Wiring and Arduino do; in fact, it’s even
based on the same microcontroller family that those two
are (the Atmel AVR controllers). It’s programmed in a
variant of Visual BASIC (BasicX), and even includes limited
support for multitasking. The programming environment
for it is available only on Windows, however. Of the various
Basic Stamp–like modules on the market, it’s arguably the
best, especially for tasks like the ones found in this book. It’s
a decent alternative for networked objects for beginners.

The BX-24 and the Basic Stamp both cost around $50
apiece, and by the time you’ve bought the starter kit,
around $100.

MTT_AppendixA.indd 356MTT_AppendixA.indd 356 8/31/07 12:03:29 PM8/31/07 12:03:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A 357

PIC and AVR
Microchip’s PIC and Atmel’s AVR microcontrollers are
excellent microcontrollers. You’ll find the AVRs at the heart
of Arduino, Wiring, and BX-24 controllers, and the PICs at
the heart of the Basic Stamps. The BX-24, Basic Stamp,
Wiring, and Arduino environments are essentially wrappers
around these controllers, making them easier to work with.
To use PICs or AVRs on their own, you need a hardware
programmer that connects to your computer, and you
need to install a command-line compiler. There are
BASIC and C compilers available for both microcontroller
families. The commercial PIC C and BASIC compilers tend
to be far more thoroughly developed and supported than
any open source compilers for that family. In contrast, avr-
gcc, the open source compiler for the AVR controllers, is
an excellent tool, and has been expanded enthusiastically
by the community using it. In fact, it’s the engine that runs
Wiring and Arduino.

If you’re looking to expand to other compilers, or you
want to learn about the technical details underlying what
you’ve seen here, www.atmel.com and www.avrfreaks.
net are the best places to start. In addition, Pascal Stang’s
AVRlib libraries for the AVR controllers offer many useful
functions: hubbard.engr.scu.edu/avr/avrlib/. If you want
to learn more about the PIC, start at the source: www.
microchip.com. If you want a good BASIC compiler for
the PIC, check out MicroEngineering Labs PicBasic Pro at
www.melabs.com, and if you want a good commercial C
compiler for it, try CCS C: www.ccsinfo.com.

Though the microcontrollers themselves are cheap
(between $1 and $10 apiece), getting all the tools set
up for yourself will cost you some money. It’s generally
cheaper on the AVR side, as the avr-gcc is a good free
compiler, and the hardware programmers for the AVR can
be gotten for less than $100. On the PIC side, you could
spend a few hundred dollars by the time you get a good
programmer and compiler. There’s also a pretty significant
time investment in getting set up, as the tools for pro-
gramming these controllers from scratch assume more
knowledge than any of the others listed here.

Make Controller
The MAKE Controller from Make Magazine, made by
Making Things (www.makingthings.com) is a powerful
controller. It’s got built-in Ethernet, high-current drivers
for motors on its outputs, and support for multitasking
and communication via OSC. At $150, it’s not the least
expensive controller here, and at 3.5" x 4.5", it’s not the

smallest, but it is highly capable. With built-in Ethernet,
it can replace the Arduino plus Lantronix combination
handily, if your project has room for its footprint.

There are a few different ways to work with the Make
module. If you’re an experienced programmer, you can set
up the compiler and development environment on your
own machine and program it in C. If you’re not, you can
interface to it from other environments by sending it OSC
commands, either via USB or via Ethernet. In addition,
there are some built-in functions called Poly functions that
allow you to build basic applications. Expect to see many
exciting new developments in terms of its interface in the
near future as well.

Propeller
The Parallax Propeller controller (www.parallax.com/
propeller) is similar to the Make controller, in that it’s a
more powerful controller that affords multitasking. The
programming environment for it is not for the beginner,
and it’s only available for Windows. The Propeller is
capable of generating video, handling input from keyboard
and mouse, and other tasks simultaneously. In fact,
Uncommon Projects have made the YBox (ybox.tv), a
device that overlays text from a website on a TV signal
using a Propeller and an XPort. Though there are not yet
generic examples using the Propeller to communicate over
Ethernet, there undoubtedly will be soon.

As advanced processors continue to fall in price, you can
expect to see more modules like the Make controller and
the Propeller on the market for hobbyists and beginners.

Phidgets
Phidgets (www.phidgets.com) is a set of sensor and
actuator modules that connect to your computer via
USB. You don’t program them, you just read their inputs
and outputs from your desktop environment using Flash,
Max/MSP, Java, or other tools. The NADA proxy tool
mentioned earlier is designed to interface with Phidgets,
among other things. Among the Phidgets modules are a
number of useful sensors and actuators that can be used
with other microcontroller and desktop environments.
Their parts are well-designed and their connectors are
solid, so if you know your project is going to take some
abuse, you may want to spend a little more and buy at
least your sensors from them.

MTT_AppendixA.indd 357MTT_AppendixA.indd 357 9/4/07 10:53:34 AM9/4/07 10:53:34 AM

www.it-ebooks.info

http://www.it-ebooks.info/

358 MAKING THINGS TALK

New Tools
There is no such thing as the technology book that’s fully up-to-date, and this book is
no exception. New tools are coming out for networking physical devices every day. Here
are a few of the ones that excited me most that came out as I was finishing this book:

• Lantronix announced two new products: the XPort
Direct, a lower cost version of the XPort; and the
MatchPort, a lower-cost and smaller version of the
WiPort. With these two, both serial-to-Ethernet and
serial-to-WiFi connections get ever cheaper.

• The Arduino Bluetooth board is now available, allowing
both programming and communication wirelessly from
an Arduino board. An Arduino Ethernet board is in the
works as well. In addition to Arduino modules made
by the original developers, there are many Arduino
derivatives coming on the market from the community
as well.

• MaxStream announced the next generation of the
XBee radios, which will include real ZigBee mesh
networking, beyond what the examples in this book
have demonstrated.

• IOgear, Netgear, Actiontec, and many others have
released Powerline Ethernet modules. These devices
enable you to send Ethernet signals over AC powerlines
at speeds up to 200 Mbps, several orders of magnitude
faster than X10. Powerline Ethernet control modules
won’t be far behind this.

More tools will follow these. Though some specifics of the
examples you’ve read may be out of date in a few years,
the principles will give you the foundations to learn not
only the tools you’ve seen here, but also new ones as they
come along.
X

SitePlayer
NetMedia’s SitePlayer is an alternative to the Lantronix
devices. It’s basically a web server with telnet on a chip. Its
form factor isn’t quite as compact as the Lantronix units,
and the tools for downloading new configurations for it
are available only for Windows. Its web interface is handy,

though, if you’re looking to build a project in which users
control a physical device through a web interface, because
the interface can live directly on the chip, with no need for
an external server.
X

MTT_AppendixA.indd 358MTT_AppendixA.indd 358 8/31/07 12:04:06 PM8/31/07 12:04:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A 359

MTT_AppendixA.indd 359MTT_AppendixA.indd 359 8/31/07 12:04:25 PM8/31/07 12:04:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

360 MAKING THINGS TALK

MTT_AppendixB.indd 360MTT_AppendixB.indd 360 8/31/07 12:06:47 PM8/31/07 12:06:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Where to Get Stuff
Many different hardware suppliers and software sources are mentioned

in this book. This appendix provides a summary of all of them, along

with a brief description of each. It’s organized in two sections: hardware

and software, sorted alphabetically by source.

Appendix B
MAKE: PROJECTS

MTT_AppendixB.indd 361MTT_AppendixB.indd 361 8/31/07 12:07:17 PM8/31/07 12:07:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

362 MAKING THINGS TALK

Hardware

Abacom Technologies
Abacom sells a range of RF transmit-
ters, receivers, and transceivers and
serial-to-Ethernet modules.
www.abacomdirect.com
email: info@abacomdirect.com
õ 383 Bering Avenue
 Toronto, ON M8Z 3B1, Canada

Aboyd Company
The Aboyd Company sells art supplies,
costumes, novelties, cardboard
standups, home décor, and more.
They’re also a good source of Charley
Chimp cymbal-playing monkeys.
www.aboyd.com
email: info@aboyd.com
! +1-888-458-2693
! +1-601-948-3477 International
" +1-601-948-3479
õ P.O. Box 4568
 Jackson, MS 39296, USA

Acroname Easier Robotics
Acroname sells a wide variety of
sensors and actuators for robotics
and electronics projects. They’ve got
an excellent range of esoteric sensors
like UV flame sensors, cameras, and
thermal array sensors. They’ve got a
lot of basic distance rangers as well.
They also have a number of good
tutorials on how to use their parts
on their site.
www.acroname.com
email: info@acroname.com
! +1-720-564-0373
" +1-720-564-0376
õ Acroname Inc.
 4822 Sterling Dr.
 Boulder, CO 80301-2350, USA

Adafruit Industries
Adafruit makes a number of useful
open source DIY electronics kits,
including an AVR programmer, an
MP3 player, and more.
www.adafruit.com
email: sales@adafruit.com

Atmel
Atmel makes the AVR microcon-
trollers that are at the heart of the
Arduino, Wiring, and BX-24 modules.
They also make the ARM microcon-
troller that runs the Make controller.
www.atmel.com
! +1-408-441-0311
õ 2325 Orchard Parkway
 San Jose, CA 95131, USA

Blue Radios
Blue Radios makes and sells Bluetooth
radio modules for electronics manu-
facturers. Their radios are at the heart
of SparkFun’s BlueSMiRF dongles.
www.blueradios.com
email: sales@blueradios.com
! +1-303-957-1003
" +1-303-845-7134
õ 7173 S. Havana Street, Suite 600
 Englewood, CO 80112, USA

Devantech/Robot Electronics
Devantech makes ultrasonic ranger
sensors, electronic compasses,
LCD displays, motor drivers, relay
controllers, and other useful add-ons
for microcontroller projects.
robot-electronics.co.uk
e-mail: sales@robot-electronics.co.uk
! +44 (0)1379 640450 or 644285
" +44 (0)1379 650482
õ Unit 2B Gilray Road
 Diss, Norfolk, IP22 4EU, England

Digi-Key Electronics
Digi-Key is one of the U.S.’s largest
retailers of electronics components.
They’re a staple source for things you
use all the time — resistors, capacitors,
connectors, some sensors, bread-
boards, wire, solder, and more.
www.digikey.com
! +1-800-344-4539 or
! +1-218-681-6674
" +1-218-681-3380
õ 701 Brooks Avenue South
 Thief River Falls, MN 56701, USA

ELFA
ELFA is one of Northern Europe’s
largest electronics components
suppliers.
www.elfa.se
email: export@elfa.se
! +46 8 580 941 30
õ S-175 80 Järfälla, Sweden

Farnell
Farnell supplies electronics compo-
nents for all of Europe. Their catalog
part numbers are consistent with
Newark in the U.S., so if you’re working
on both sides of the Atlantic, sourcing
Farnell parts can be convenient.
www.farnell.co.uk
email: sales@farnell.co.uk
! +44-8701-200-200
" +44-8701-200-201
õ Canal Road,
 Leeds, LS12 2TU, United Kingdom

Figaro USA, Inc.
Figaro Sensor sells a range of gas
sensors, including volatile organic
compound sensors, carbon monoxide
sensors, oxygen sensors, and more.
www.figarosensor.com
email: figarousa@figarosensor.com
! +1-847-832-1701
" +1-847-832-1705
õ 3703 West Lake Ave., Suite 203
 Glenview, IL 60026, USA

KEY
! Phone / ! Toll Free
" Fax
õ Mailing address

MTT_AppendixB.indd 362MTT_AppendixB.indd 362 8/31/07 12:07:36 PM8/31/07 12:07:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B 363

Future Technology Devices
International, Ltd. +(FTDI)
FTDI makes a range of USB-to-serial
adaptor chips, including the FT232RL
that’s on many of the modules in
this book.
www.ftdichip.com
email: admin1@ftdichip.com
! +44 (0) 141 429 2777
õ 373 Scotland Street
 Glasgow, G5 8QB, United Kingdom

Glolab
Glolab makes a range of electronic
kits and modules including several
useful RF and IR transmitters,
receivers, and transceivers.
www.glolab.com
email: lab@glolab.com

Gridconnect
Gridconnect distributes networking
products, including those from
Lantronix and Maxstream.
www.gridconnect.com
email: sales@gridconnect.com
! +1 630 245 1445
" +1 630 245 1717
!! +1 800 975 GRID (4743) U.S. toll-free
õ 1630 W. Diehl Road
 Naperville, IL 60563, USA

Images SI Inc.
Images SI sells robotics and electron-
ics parts. They carry a range of RFID
parts, force-sensing resistors, stretch
sensors, gas sensors, electronic kits,
speech recognition kits, solar energy
parts, and microcontrollers.
www.imagesco.com
email: imagesco@verizon.net
! +1-718-966-3694
" +1-718-966-3695
õ 109 Woods of Arden Road
 Staten Island, NY 10312, USA

Interlink Electronics
Interlink makes force-sensing resistors,
touchpads, and other input devices.
www.interlinkelectronics.com
email: specialty@interlink
 electronics.com
! +1-805-484-8855
" +1-805-484-8989
õ 546 Flynn Road
 Camarillo, CA 93012, USA

IOGear
IOGear make computer adaptors. Their
USB-to-serial adaptors are good, and
they carry Powerline Ethernet products.
www.iogear.com
email: sales@iogear.com
!! +1-866-946-4327 Toll-free
! +1-949-453-8782
" +1-949-453-8785
õ 23 Hubble Drive
 Irvine, CA 92618, USA

Jameco Electronics
Jameco carries bulk and individual
electronics components, cables,
breadboards, tools, and other staples
for the electronics hobbyist or
professional.
www.jameco.com
 1355 Shoreway Road
 Belmont, CA 94002, USA
email:
domestic@jameco.com
international@jameco.com
custservice@jameco.com
! +1-800-831-4242
 Toll-free 24-hour order line
! +1-650-592-8097
 International order line
" +1-650-592-2503 International
" +1-800-237-6948! Toll-free fax
" +001-800-593-1449!

 Mexico toll-free fax
" +1-803-015-237-6948!

 Indonesia toll-free fax

Keyspan
Keyspan makes computer adaptors.
Their USA-19xx series of USB-to-serial
adaptors are very handy for micro-
controller work.
www.keyspan.com
email: info@keyspan.com
! +1-510-222-0131 Info/sales
! +1-510-222-8802 Support
" +1-510-222-0323
õ 4118 Lakeside Dr
 Richmond, CA 94806, USA

Lantronix
Lantronix makes the serial-to-Ethernet
modules used in this book: the XPort,
the WiPort, the WiMicro, the Micro,
and many others.
www.lantronix.com
email: sales@lantronix.com
! +1-800-526-8766
! +1-949-453-3990
" +1-949-450-7249
õ 5353 Barranca Parkway
 Irvine, CA 92618, USA

Libelium
Libelium makes an XBee shield for
Arduino and other wireless products.
www.libelium.com
email: info@libelium.com
õ Libelium Comunicaciones
 Distribuidas S.L.
 Maria de Luna 11, Instalaciones
 CEEIARAGON, C.P: 50018
 Zaragoza, Spain

Linx Technologies
Linx makes a number of RF receivers,
transmitters, and transceivers.
www.linxtechnologies.com
email: info@linxtechnologies.com
! +1-800-736-6677 U.S.
! +1-541-471-6256 International
" +1-541-471-6251
õ 159 Ort Lane
 Merlin, OR 97532, USA

MTT_AppendixB.indd 363MTT_AppendixB.indd 363 9/4/07 10:50:40 AM9/4/07 10:50:40 AM

www.it-ebooks.info

http://www.it-ebooks.info/

364 MAKING THINGS TALK

Low Power Radio Solutions
LPRS makes a number of RF receivers,
transmitters, and transceivers.
www.lprs.co.uk
email: info@lprs.co.uk
! +44-1993-709418
" +44-1993-708575
õ Two Rivers Industrial Estate
 Station Lane, Witney
 Oxon, OX28 4BH, United Kingdom

Making Things
Making Things makes the MAKE
controller, and originated the now-
discontinued Teleo controllers. They do
custom hardware engineering solutions.
www.makingthings.com
email: info@makingthings.com
" +1-415-255-9513
õ 1020 Mariposa Street, #2
 San Francisco, CA 94110, USA

Mannings RFID Shop
Mannings sells RFID tools and bar
code readers and printers. They sell
the ID Innovations RFID readers.
www.rfidshop.com
email: info@manningsrfid.com
! +44-1704-538-202
" +44-1704-514-713
õ Units 1–5, Russell Road
 Southport, Merseyside, England
 PR9 7SY, United Kingdom

Maxim Integrated Products
Maxim makes sensors, communica-
tions chips, power management
chips, and more. They also own Dallas
Semiconductor. Together, they’re one
of the major sources for chips related
to serial communication, temperature
sensors, LCD control, and much more.
www.maxim-ic.com
email: info2@maxim-ic.com
! +1-408-737-7600
" +1-408-737-7194
õ 120 San Gabriel Drive
 Sunnyvale, CA 94086, USA

Maxstream
Maxstream makes ZigBee radios,
radio modems, and Ethernet bridges.
www.maxstream.net
! +1-866-765-9885
! +1-801-765-9885 International
" +1-801-765-9895
õ 355 South 520 West Suite 180
 Lindon, UT 84042, USA

Microchip
Microchip makes the PIC family of
microcontrollers. They have a very
wide range of microcontrollers, for
just about every conceivable purpose.
www.microchip.com
! +1-480-792-7200
õ 2355 West Chandler Blvd.
 Chandler, AZ, 85224-6199, USA

Mouser
Mouser is a large retailer of electronic
components in the U.S. They stock
most of the staple parts used in the
projects in this book, like resistors,
capacitors, and some sensors. They
also carry the FTDI USB-to-serial cable.
www.mouser.com
email: help@mouser.com
õ 1000 North Main Street
 Mansfield, TX 76063, USA

NetMedia
NetMedia makes the BX-24 micro-
controller module and the SitePlayer
Ethernet module.
www.basicx.com
siteplayer.com
email: sales@netmedia.com
! +1-520-544-4567
" +1-520-544-0800
õ 10940 N. Stallard Place
 Tucson, AZ 85737, USA

Newark In One Electronics
Newark supplies electronics compo-
nents in the U.S. Their catalog part
numbers are consistent with Farnell
in the Europe, so if you’re working on
both sides of the Atlantic, sourcing
parts from Farnell and Newark can
be convenient.
www.newark.com
email: somewhere@something.com
! +1-773-784-5100
" +1-888-551-4801
õ 4801 N. Ravenswood
 Chicago, IL 60640-4496, USA

New Micros
New Micros sells a number of micro-
controller modules. They also sell a
USB-XBee dongle that allows you to
connect Maxstream’s XBee radios to
a computer really easily. Their dongles
also have all the necessary pins
connected for reflashing the XBee’s
firmware serially.
www.newmicros.com
email: nmisales@newmicros.com
! +1-214-339-2204

Parallax
Parallax makes the Basic Stamp
family of microcontrollers. They also
make the Propeller microcontroller, and
a wide range of sensors, beginners’
kits, robots, and other useful tools for
people interested in electronics and
microcontroller projects.
www.parallax.com
email: sales@parallax.com
!! +1-888-512-1024 Toll-free sales
! +1-916-624-8333
 Office/international
" +1-916-624-8003
õ 599 Menlo Drive
 Rocklin, California 95765, USA

MTT_AppendixB.indd 364MTT_AppendixB.indd 364 8/31/07 12:08:38 PM8/31/07 12:08:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B 365

Phidgets
Phidgets makes input and output
modules that connect desktop and
laptop computers to the physical
world.
www.phidgets.com
email: sales@phidgets.com
! +1-403-282-7335
" +1402-282-7332
õ 2715A 16A NW
 Calgary, Alberta T2M3R7, Canada

RadioShack
You’ve got questions, they’ve got a
cell phone plan for you. Despite their
increasing focus on mobile phone
plans, they still do carry some useful
parts. Check the website for part
numbers and call your local store first
to see if they’ve got what you need.
It’ll save you time.
www.radioshack.com

Reynolds Electronics
Reynolds Electronics makes a
number of small kits and modules
for RF and infrared communications,
IR remote control, and other useful
add-on functions for microcontroller
projects.
www.rentron.com
email: sales@rentron.com
! +1-772-589-8510
" +1-772-589-8620
õ 12300 Highway A1A
 Vero Beach, Florida, 32963, USA

Samtec
Samtec makes electronic connectors.
They have a very wide range of
connectors, so if you’re looking for
something odd, they probably
make it.
www.samtec.com
email: info@samtec.com
! +1-800-SAMTEC-9

Skyetek
Skyetek makes RFID readers, writers,
and antennas.
www.skyetek.com
! +1-720-565-0441
" +1-720-565-8989
õ 11030 Circle Point Road, Suite 300
 Westminster, CO 80020, USA

Smarthome
Smarthome makes a wide variety of
home automation devices, including
cameras, appliance controllers, X10,
and INSTEON devices.
www.smarthome.com
email: custsvc@smarthome.com
! 1-800-762-7846
! + 1-800-871-5719 Canada
! +1-949-221-9200 International
õ 16542 Millikan Avenue
 Irvine, CA 92606, USA

Smart Projects/PCB Europe
Smart Projects/PCB Europe makes
Arduino modules and shields, kits for
building your own modules. They also
make custom electronics projects.
www.pcb-europe.net/catalog
email: info@pcb-europe.net
! +39-339-296-5590
õ Via Siccardi, 12
 10034 Chivasso TO, Italy

SparkFun Electronics
SparkFun makes it easier to use all
kinds of electronic components. They
make breakout boards for sensors,
radios, power regulators, and sell a
variety of microcontroller platforms.
www.sparkfun.com
email: spark@sparkfun.com
õ 2500 Central Avnue, Suite Q
 Boulder, CO 80301, USA

Symmetry Electronics
Symmetry sells ZigBee and Bluetooth
radios, serial-to-Ethernet modules, wi-fi
modules, cellular modems, and other
electronic communications devices.
www.semiconductorstore.com
! +1-877-466-9722
! +1-310-643-3470 International
" +1-310-297-9719
õ 5400 West Rosecrans Avenue
 Hawthorne, CA 90250, USA

TI-RFID
TIRIS is Texas Instruments’ RFID
division. They make tags and readers for
RFID in many bandwidths and protocols.
www.tiris.com
! +1-800-962-RFID (7343)
" +1-214-567-RFID (7343)
õ Radio Frequency
 Identification Systems
 6550 Chase Oaks Blvd., MS 8470
 Plano, TX 75023, USA

Trossen Robotics
Trossen Robotics sells a range of RFID
supplies and robotics. They have a
number of good sensors, including
Interlink force-sensing resistors, linear
actuators, Phidgets kits, RFID readers,
and tags for most RFID ranges.
www.trossenrobotics.com
email: jenniej@trossenrobotics.com
! +1-877-898-1005
" +1-708-531-1614
õ 1 Westbrook Co. Center, Suite 910
 Westchester, IL 60154, USA

Uncommon Projects
Uncommon Projects make the YBox,
a text overlay device that puts text
from web feeds on your TV.
www.uncommonprojects.com
ybox.tv
email: info@uncommonprojects.com
õ 68 Jay Street #206
 Brooklyn New York 11201, USA

MTT_AppendixB.indd 365MTT_AppendixB.indd 365 9/4/07 10:51:18 AM9/4/07 10:51:18 AM

www.it-ebooks.info

http://www.it-ebooks.info/

366 MAKING THINGS TALK

Most of the software listed in this
book is open source. In the following
listings, anything that’s not open
source is noted explicitly as a
commercial application. If there’s
no note, you can assume it’s open.

Arduino
Arduino is a programming environ-
ment for AVR microcontrollers. It’s
based on Processing’s programming
interface. It runs on Mac OS X, Linux,
and Windows operating systems.
www.arduino.cc

Asterisk
Asterisk is a software private
branch exchange (PBX) manager
for telephony. It runs on Linux
and Unix operating systems.
www.asterisk.org

AVRlib
AVRlib is a library of C functions for a
variety of tasks using AVR processors.
It runs on Mac OS X, Linux, and
Windows operating systems as a
library for the avr-gcc compiler.
hubbard.engr.scu.edu/avr/avrlib/

avr-gcc
The GNU avr-gcc is a C compiler and
assembler for AVR microcontrollers.
It runs on Mac OS X, Linux, and
Windows operating systems.
www.avrfreaks.net/AVRGCC/

CCS C
CCS C is a commercial C compiler for
the PIC microcontroller. It runs on
Windows and Linux operating systems.
www.ccsinfo.com

Software Dave’s Telnet
Dave’s Telnet is a telnet application
for Windows.
dtelnet.sourceforge.net

Eclipse
Eclipse is an integrated development
environment (IDE) for programming
in many different languages. It’s
extensible through a plugin architec-
ture, and there are compiler links to
most major programming languages.
It runs on Mac OS X, Linux, and Windows.
www.eclipse.org

Evocam
Evocam is a commercial webcam
application for Mac OS X.
evological.com

Exemplar
Exemplar is a tool for authoring sensor
applications through behavior rather
than through programming. It runs on
Mac OS X, Linux, and Windows operat-
ing systems as a plugin for Eclipse.
hci.stanford.edu/research/exemplar/

Fwink
Fwink is a webcam application
for Windows.
lundie.ca/fwink

Girder
Girder is a commercial home
automation application for Windows.
www.girder.nl

Java
Java is a programming language.
It runs on Mac OS X, Linux, and
Windows operating systems, and
many embedded systems as well.
java.sun.com

Macam
Macam is a webcam driver for
Mac OS X.
https://sourceforge.net/projects/
webcam-osx/

Max/MSP
Max is a commercial graphic data
flow authoring tool. It allows you
to program by connecting graphic
objects rather than writing text.
Connected with Max are MSP, a
realtime audio signal processing
library, and Jitter, a realtime video
signal processing library. It runs
on Mac OS X, Linux, and Windows
operating systems.
www.cycling74.com

Puredata (PD)
Puredata (PD) is a graphic data
flow authoring tool. It allows you
to program by connecting graphic
objects rather than writing text.
It runs on Mac OS X, Linux, and
Windows operating systems.
puredata.info

PEAR
PEAR is the PHP Extension and
Application Repository. It hosts
extension libraries for the PHP
scripting language, including NET_
POP3 (pear.php.net/package/Net_
POP3), which is used in this book.
pear.php.net

PHP
PHP is a scripting language that is
especially suited for web development
and can be embedded into HTML.
It runs on Mac OS X, Linux, and
Windows operating systems.
www.php.net

MTT_AppendixB.indd 366MTT_AppendixB.indd 366 9/4/07 10:52:10 AM9/4/07 10:52:10 AM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B 367

PicBasic Pro
PicBasic Pro is a commercial BASIC
compiler for PIC microcontrollers.
It runs on Windows.
www.melabs.com

Processing
Processing is a programming language
and environment designed for the non-
technical user who wants to program
images, animation, and interaction. It
runs on Mac OS X, Linux, and Windows.
www.processing.org

Proxi
Proxi is a free (but not open source)
application for automating operating
system tasks based on events.
It runs on Mac OS X.
proxi.griffintechnology.com

Putty SSH
Putty is a telnet/SSH/serial port
client for Windows.
www.puttyssh.org

QRcode Library
QRcode library is a set of libraries for
encoding and decoding QRcode 2-D
barcodes. It runs on Mac OS X, Linux,
and Windows as a library for Java.
qrcode.sourceforge.jp

Dan Shiffman’s
Processing Libraries
Dan Shiffman has written a number
of useful libraries for Processing,
including the pqrcode library used
in this book (www.shiffman.net/p5/
pqrcode). He’s also got a SFTP library
(www.shiffman.net/2007/06/04/
sftp-with-java-processing/) and
a sudden-motion sensor library
for Mac OS X (www.shiffman.
net/2006/10/28/
processingsms/).

Sketchtools NADA
NADA is a commercial proxy tool
for connecting programming environ-
ments with hardware devices.
www.sketchtools.com

TinkerProxy
TinkerProxy is a TCP-to-serial proxy
application. It runs on Windows.
tinker.it/now/category/software/

UDP Library for Processing
Hypermedia’s UDP library for
Processing enables you to communi-
cate via UDP from Processing. It runs
on Mac OS X, Linux, and Windows
as a library for Processing.
hypermedia.loeil.org/processing/

Wiring
Wiring is a programming environ-
ment for AVR microcontrollers. It’s
based on Processing’s programming
interface. It runs on Mac OS X, Linux,
and Windows operating systems.
www.wiring.org.co

MTT_AppendixB.indd 367MTT_AppendixB.indd 367 9/4/07 10:52:42 AM9/4/07 10:52:42 AM

www.it-ebooks.info

http://www.it-ebooks.info/

368 MAKING THINGS TALK

MTT_AppendixC.indd 368MTT_AppendixC.indd 368 9/6/07 12:56:39 PM9/6/07 12:56:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Program Listings
This Appendix contains the complete code listings for all of the

programs in the book. You can find a link to download the source code

at www.makezine.com/go/MakingThingsTalk.

Appendix C
MAKE: PROJECTS

MTT_AppendixC.indd 369MTT_AppendixC.indd 369 9/6/07 12:57:15 PM9/6/07 12:57:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

370 MAKING THINGS TALK

Chapter 1

Hello World!
 Language: Processing
Prints out “Hello World!”

println("Hello World!\n");

Triangle drawing program
Language: Processing
Draws a triangle whenever the mouse button is not
pressed. Erases when the mouse button is pressed.

// declare your variables:

float redValue = 0; // variable to hold the red color

float greenValue = 0; // variable to hold the green color

float blueValue = 0; // variable to hold the blue color

// the setup() method runs once at the beginning of the program:

void setup() {

 size(320, 240); // sets the size of the applet window

 background(0); // sets the background of the window to black

 fill(0); // sets the color to fill shapes with (0 = black)

 smooth(); // draw with antialiased edges

}

// the draw() method runs repeatedly, as long as the applet window

// is open. It refreshes the window, and anything else you program

// it to do:

void draw() {

 // Pick random colors for red, green, and blue:

 redValue = random(255);

 greenValue = random(255);

 blueValue = random(255);

 // set the line color:

 stroke(redValue, greenValue, blueValue);

 // draw when the mouse is up (to hell with conventions):

 if (mousePressed == false) {

 // draw a triangle:

 triangle(mouseX, mouseY, width/2, height/2,pmouseX, pmouseY);

 }

 // erase when the mouse is down:

 else {

 background(0);

 fill(0);

 }

}

Hello World!
Language: PHP
Prints out a “Hello World!” HTML page

<?php

echo "<html><head></head><body>\n";

echo "hello world!\n";

echo "</body></html>\n";

?>

Date printer
Language: PHP
Prints the date and time in an HTML page.

<?php

// Get the date, and format it:

$date = date("Y-m-d h:i:s\t");

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

echo "hello world!
\n";

// Include the date:

echo "Today's date: $date
\n";

// finish the HTML:

echo "</body></html>\n";

?>

Blink (aka Hello World!
In Arduino/Wiring):
Language: Arduino/Wiring
Blinks an LED attached to pin 13 every half second.
Connections: Pin 13: + leg of an LED (- leg goes to ground)

int LEDPin = 13;

void setup() {

 pinMode(LEDPin, OUTPUT); // set pin 13 to be an output

}

void loop() {

 digitalWrite(LEDPin, HIGH); // turn the LED on pin 13 on

 delay(500); // wait half a second

 digitalWrite(LEDPin, LOW); // turn the LED off

 delay(500); // wait half a second

}

MTT_AppendixC.indd 370MTT_AppendixC.indd 370 9/6/07 12:57:50 PM9/6/07 12:57:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 371

Simple Serial
Language: Arduino/Wiring
Listens for an incoming serial byte, adds one to the byte
and sends the result back out serially. Also blinks an LED
on pin 13 every half second.

int LEDPin = 13; // you can use any digital I/O pin you want

int inByte = 0; // variable to hold incoming serial data

long blinkTimer = 0; // keeps track of how long since the LED

 // was last turned off

int blinkInterval = 1000; // a full second from on to off to on again

void setup() {

 pinMode(LEDPin, OUTPUT); // set pin 13 to be an output

 Serial.begin(9600); // configure the serial port for 9600 bps

 // data rate.

}

void loop() {

 // if there are any incoming serial bytes available to read:

 if (Serial.available() > 0) {

 // then read the first available byte:

 inByte = Serial.read();

 // and add one to it, then send the result out:

 Serial.print(inByte+1, BYTE);

 }

 // Meanwhile, keep blinking the LED.

 // after a quarter of a second, turn the LED on:

 if (millis() - blinkTimer >= blinkInterval / 2) {

 digitalWrite(LEDPin, HIGH); // turn the LED on pin 13 on

 }

 // after a half a second, turn the LED off and reset the timer:

 if (millis() - blinkTimer >= blinkInterval) {

 digitalWrite(LEDPin, LOW); // turn the LED off

 blinkTimer = millis(); // reset the timer

 }

}

Chapter 2

Sensor Reader
Language: Wiring/Arduino
Reads two analog inputs and two digital inputs and
outputs their values.
Connections:
• analog sensors on analog input pins 0 and 1
• switches on digital I/O pins 2 and 3

int leftSensor = 0; // analog input for the left arm

int rightSensor = 1; // analog input for the right arm

int resetButton = 2; // digital input for the reset button

int serveButton = 3; // digital input for the serve button

int leftValue = 0; // reading from the left arm

int rightValue = 0; // reading from the right arm

int reset = 0; // reading from the reset button

int serve = 0; // reading from the serve button

void setup() {

 // configure the serial connection:

 Serial.begin(9600);

 // configure the digital inputs:

 pinMode(resetButton, INPUT);

 pinMode(serveButton, INPUT);

}

void loop() {

 // read the analog sensors:

 leftValue = analogRead(leftSensor);

 rightValue = analogRead(rightSensor);

 // read the digital sensors:

 reset = digitalRead(resetButton);

 serve = digitalRead(serveButton);

 // print the results:

 Serial.print(leftValue, DEC);

 Serial.print(",");

 Serial.print(rightValue, DEC);

 Serial.print(",");

 Serial.print(reset, DEC);

 Serial.print(",");

 // print the last sensor value with a println() so that

 // each set of four readings prints on a line by itself:

 Serial.println(serve, DEC);

}

MTT_AppendixC.indd 371MTT_AppendixC.indd 371 9/6/07 12:58:11 PM9/6/07 12:58:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

372 MAKING THINGS TALK

Serial String Reader
Language: Processing
Reads in a string of characters from a serial port until
it gets a linefeed (ASCII 10). Then splits the string into
sections separated by commas. Then converts the
sections to ints, and prints them out.

import processing.serial.*; // import the Processing serial library

int linefeed = 10; // Linefeed in ASCII

Serial myPort; // The serial port

void setup() {

 // List all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my mac

 // is always my Arduino module, so I open Serial.list()[0].

 // Change the 0 to the appropriate number of the serial port

 // that your microcontroller is attached to.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil(linefeed);

}

void draw() {

 // twiddle your thumbs

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas

 // and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // print out the values you got:

 for (int sensorNum = 0; sensorNum < sensors.length; sensorNum++) {

 print("Sensor " + sensorNum + ": " + sensors[sensorNum] + "\t");

 }

 // add a linefeed after all the sensor values are printed:

 println();

 }

}

Monski Pong
Language: Processing
Uses the values from four sensors to animate a game of
pong. Expects a serial string from the serial port in the
following format:
leftPaddle, rightPaddle, resetButton, serveButton, linefeed
• leftPaddle: ASCII numeric string from 0 - 1023
• rightPaddle: ASCII numeric string from 0 - 1023
• resetButton: ASCII numeric string from 0 - 1
• serveButton: ASCII numeric string from 0 - 1

import processing.serial.*; // import the serial library

int linefeed = 10; // Linefeed in ASCII

Serial myPort; // The serial port

float leftPaddle, rightPaddle; // variables for the flex sensor values

int resetButton, serveButton; // variables for the button values

int leftPaddleX, rightPaddleX; // horizontal positions of the paddles

int paddleHeight = 50; // vertical dimension of the paddles

int paddleWidth = 10; // horizontal dimension of the paddles

float leftMinimum = 250; // minimum value of the left flex sensor

float rightMinimum = 260; // minimum value of the right flex sensor

float leftMaximum = 450; // maximum value of the left flex sensor

float rightMaximum = 460; // maximum value of the right flex sensor

int ballSize = 10; // the size of the ball

int xDirection = 1; // the ball's horizontal direction.

 // left is –1, right is 1.

int yDirection = 1; // the ball's vertical direction.

 // up is –1, down is 1.

int xPos, yPos; // the ball's horizontal and vertical positions

boolean ballInMotion = false; // whether the ball should be moving

int leftScore = 0;

int rightScore = 0;

PFont myFont;

int fontSize = 36;

void setup() {

 // set the window size:

 size(640, 480);

 // initialize the ball in the center of the screen:

 xPos = width/2;

 yPos = height/2;

 // List all the available serial ports

 println(Serial.list());

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[0], 9600);

MTT_AppendixC.indd 372MTT_AppendixC.indd 372 9/6/07 12:59:00 PM9/6/07 12:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 373

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil(linefeed);

 // initialize the sensor values:

 leftPaddle = height/2;

 rightPaddle = height/2;

 resetButton = 0;

 serveButton = 0;

 // initialize the paddle horizontal positions:

 leftPaddleX = 50;

 rightPaddleX = width - 50;

 // set no borders on drawn shapes:

 noStroke();

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], fontSize);

 textFont(myFont);

}

void draw() {

 background(0);

 // draw the left paddle:

 rect(leftPaddleX, leftPaddle, paddleWidth, paddleHeight);

 // draw the right paddle:

 rect(rightPaddleX, rightPaddle, paddleWidth, paddleHeight);

 // calculate the ball's position and draw it:

 if (ballInMotion == true) {

 animateBall();

 }

 // if the serve button is pressed, start the ball moving:

 if (serveButton == 1) {

 ballInMotion = true;

 }

 // if the reset button is pressed, reset the scores

 // and start the ball moving:

 if (resetButton == 1) {

 leftScore = 0;

 rightScore = 0;

 ballInMotion = true;

 }

 // print the scores:

 text(leftScore, fontSize, fontSize);

 text(rightScore, width-fontSize, fontSize);

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas

 //and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // if you received all the sensor strings, use them:

 if (sensors.length == 4) {

 // calculate the flex sensors' ranges:

 float leftRange = leftMaximum - leftMinimum;

 float rightRange = rightMaximum - rightMinimum;

 // scale the flex sensors' results to the paddles' range:

 leftPaddle = height * (sensors[0] - leftMinimum) / leftRange;

 rightPaddle = height * (sensors[1] - rightMinimum) / rightRange;

 // assign the switches' values to the button variables:

 resetButton = sensors[2];

 serveButton = sensors[3];

 // print the sensor values:

 print("left: "+ leftPaddle + "\tright: " + rightPaddle);

 println("\treset: "+ resetButton + "\tserve: " + serveButton);

 }

 }

}

void animateBall() {

 // if the ball is moving left:

 if (xDirection < 0) {

 // if the ball is to the left of the left paddle:

 if ((xPos <= leftPaddleX)) {

 // if the ball is in between the top and bottom

 // of the left paddle:

 if((leftPaddle - (paddleHeight/2) <= yPos) &&

 (yPos <= leftPaddle + (paddleHeight /2))) {

 // reverse the horizontal direction:

 xDirection =-xDirection;

 }

 }

 }

 // if the ball is moving right:

 else {

 // if the ball is to the right of the right paddle:

 if ((xPos >= (rightPaddleX + ballSize/2))) {

 // if the ball is in between the top and bottom

 // of the right paddle:

 if((rightPaddle - (paddleHeight/2) <=yPos) &&

 (yPos <= rightPaddle + (paddleHeight /2))) {

 // reverse the horizontal direction:

 xDirection =-xDirection;

 }

 }

 }

MTT_AppendixC.indd 373MTT_AppendixC.indd 373 9/6/07 12:59:20 PM9/6/07 12:59:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

374 MAKING THINGS TALK

 // if the ball goes off the screen left:

 if (xPos < 0) {

 rightScore++;

 resetBall();

 }

 // if the ball goes off the screen right:

 if (xPos > width) {

 leftScore++;

 resetBall();

 }

 // stop the ball going off the top or the bottom of the screen:

 if ((yPos - ballSize/2 <= 0) || (yPos +ballSize/2 >=height)) {

 // reverse the y direction of the ball:

 yDirection = -yDirection;

 }

 // update the ball position:

 xPos = xPos + xDirection;

 yPos = yPos + yDirection;

 // Draw the ball:

 rect(xPos, yPos, ballSize, ballSize);

}

void resetBall() {

 // put the ball back in the center

 xPos = width/2;

 yPos = height/2;

}

Monski Pong with Handshake
Language: Processing
Uses the values from four sensors to animate a game of
pong. Expects a serial string from the serial port in the
following format:
leftPaddle, rightPaddle, resetButton, serveButton, linefeed
• leftPaddle: ASCII numeric string from 0 - 1023
• rightPaddle: ASCII numeric string from 0 - 1023
• resetButton: ASCII numeric string from 0 - 1
• serveButton: ASCII numeric string from 0 - 1

Uses software handshaking by sending a carriage return
for the microcontroller to respond to.

import processing.serial.*; // import the serial library

int linefeed = 10; // Linefeed in ASCII

Serial myPort; // The serial port

boolean madeContact = false; // whether you've made initial contact

 // with the microcontroller

float leftPaddle, rightPaddle; // variables for the flex sensor values

int resetButton, serveButton; // variables for the button values

int leftPaddleX, rightPaddleX; // horizontal positions of the paddles

int paddleHeight = 50; // vertical dimension of the paddles

int paddleWidth = 10; // horizontal dimension of the paddles

float leftMinimum = 250; // minimum value of the left flex sensor

float rightMinimum = 260; // minimum value of the right flex sensor

float leftMaximum = 450; // maximum value of the left flex sensor

float rightMaximum = 460; // maximum value of the right flex sensor

int ballSize = 10; // the size of the ball

int xDirection = 1; // the ball's horizontal direction.

// left is –1, right is 1.

int yDirection = 1; // the ball's vertical direction.

// up is –1, down is 1.

int xPos, yPos; // the ball's horizontal and vertical positions

boolean ballInMotion = false; // whether or not the ball should be moving

int leftScore = 0;

int rightScore = 0;

PFont myFont;

int fontSize = 36;

void setup() {

 // set the window size:

 size(640, 480);

 // initialize the ball in the center of the screen:

 xPos = width/2;

 yPos = height/2;

 // List all the available serial ports

 println(Serial.list());

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil(linefeed);

 // initialize the sensor values:

 leftPaddle = height/2;

 rightPaddle = height/2;

 resetButton = 0;

 serveButton = 0;

 // initialize the paddle horizontal positions:

 leftPaddleX = 50;

 rightPaddleX = width - 50;

 // set no borders on drawn shapes:

 noStroke();

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], fontSize);

 textFont(myFont);

}

MTT_AppendixC.indd 374MTT_AppendixC.indd 374 9/6/07 12:59:40 PM9/6/07 12:59:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 375

void draw() {

 // if you've never gotten a string from the microcontroller,

 // keep sending carriage returns to prompt for one:

 if (madeContact == false) {

 myPort.write('\r');

 }

 background(0);

 // draw the left paddle:

 rect(leftPaddleX, leftPaddle, paddleWidth, paddleHeight);

 // draw the right paddle:

 rect(rightPaddleX, rightPaddle, paddleWidth, paddleHeight);

 // calculate the ball's position and draw it:

 if (ballInMotion == true) {

 animateBall();

 }

 // if the serve button is pressed, start the ball moving:

 if (serveButton == 1) {

 ballInMotion = true;

 }

 // if the reset button is pressed, reset the scores

 // and start the ball moving:

 if (resetButton == 1) {

 leftScore = 0;

 rightScore = 0;

 ballInMotion = true;

 }

 // print the scores:

 text(leftScore, fontSize, fontSize);

 text(rightScore, width-fontSize, fontSize);

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // if serialEvent occurs at all, contact with the microcontroller

 // has been made:

 madeContact = true;

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas

 //and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // if you received all the sensor strings, use them:

 if (sensors.length == 4) {

 // calculate the flex sensors' ranges:

 float leftRange = leftMaximum - leftMinimum;

 float rightRange = rightMaximum - rightMinimum;

 // scale the flex sensors' results to the paddles' range:

 leftPaddle = height * (sensors[0] - leftMinimum) / leftRange;

 rightPaddle = height * (sensors[1] - rightMinimum) / rightRange;

 // assign the switches' values to the button variables:

 resetButton = sensors[2];

 serveButton = sensors[3];

 // print the sensor values:

 print("left: "+ leftPaddle + "\tright: " + rightPaddle);

 println("\treset: "+ resetButton + "\tserve: " + serveButton);

 // send out the serial port to ask for data:

 myPort.write('\r');

 }

 }

}

void animateBall() {

 // if the ball is moving left:

 if (xDirection < 0) {

 // if the ball is to the left of the left paddle:

 if ((xPos <= leftPaddleX)) {

 // if the ball is in between the top and bottom

 // of the left paddle:

 if((leftPaddle - (paddleHeight/2) <= yPos) &&

 (yPos <= leftPaddle + (paddleHeight /2))) {

 // reverse the horizontal direction:

 xDirection =-xDirection;

 }

 }

 }

 // if the ball is moving right:

 else {

 // if the ball is to the right of the right paddle:

 if ((xPos >= (rightPaddleX + ballSize/2))) {

 // if the ball is in between the top and bottom

 // of the right paddle:

 if((rightPaddle - (paddleHeight/2) <=yPos) &&

 (yPos <= rightPaddle + (paddleHeight /2))) {

 // reverse the horizontal direction:

 xDirection =-xDirection;

 }

 }

 }

 // if the ball goes off the screen left:

 if (xPos < 0) {

 rightScore++;

 resetBall();

 }

MTT_AppendixC.indd 375MTT_AppendixC.indd 375 9/6/07 1:00:03 PM9/6/07 1:00:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

376 MAKING THINGS TALK

 // if the ball goes off the screen right:

 if (xPos > width) {

 leftScore++;

 resetBall();

 }

 // stop the ball going off the top or the bottom of the screen:

 if ((yPos - ballSize/2 <= 0) || (yPos +ballSize/2 >=height)) {

 // reverse the y direction of the ball:

 yDirection = -yDirection;

 }

 // update the ball position:

 xPos = xPos + xDirection;

 yPos = yPos + yDirection;

 // Draw the ball:

 rect(xPos, yPos, ballSize, ballSize);

}

void resetBall() {

 // put the ball back in the center

 xPos = width/2;

 yPos = height/2;

}

Chapter 3

Modified Date page
Language: PHP
Prints the date. But no HTML.

<?php

// Get the date, and format it:

$date = date("Y-m-d h:i:s\t");

// Include the date:

echo "< $date >\n";

?>

Parameter reader
Language: PHP
Prints any parameters sent in using an HTTP GET command.

<?php

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

// print out all the variables:

foreach ($_REQUEST as $key => $value)

 {

 echo "$key: $value
\n";

 }

// finish the HTML:

echo "</body></html>\n";

?>

Age checker
Language: PHP
Expects two parameters from the HTTP request:
• name (a text string)
• age (an integer)
Prints a personalized greeting based on the name and age.

<?php

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

// read all the parameters and assign them to local variables:

foreach ($_REQUEST as $key => $value) {

 if ($key == "name") {

 $name = $value;

 }

 if ($key == "age") {

 $age = $value;

 }

 }

MTT_AppendixC.indd 376MTT_AppendixC.indd 376 9/6/07 1:00:37 PM9/6/07 1:00:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 377

if ($age < 21) {

 echo "<p> $name, You're not old enough to drink.</p>\n";

} else {

 echo "<p> Hi $name. You're old enough to have a drink, but do ";

 echo "so responsibly.</p>\n";

}

// finish the HTML:

echo "</body></html>\n";

?>

Analog sensor reader
Language: Arduino/Wiring
Reads an analog input on Analog in 0, prints the result as
an ASCII-formatted decimal value.
Connections:
• FSR analog sensor on Analog in 0

int sensorValue; // outgoing ADC value

void setup()

{

 // start serial port at 9600 bps:

 Serial.begin(9600);

}

void loop()

{

 sensorValue = analogRead(0); // read analog input.

 // send analog value out in ASCII decimal format:

 Serial.println(sensorValue, DEC);

 delay(10); // wait 10ms for next reading.

}

Serial String Reader
Language: Processing
Reads in a string of characters until it gets a linefeed (ASCII
10). Then converts the string into a number. Then graphs it.

import processing.serial.*;

int graphPosition = 0; // the horizontal position of the latest

 // line to be drawn on the graph

int linefeed = 10; // linefeed in ASCII

Serial myPort; // The serial port

int sensorValue = 0; // the value from the sensor

void setup() {

 size(400,300);

 // List all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my Mac

 // is always my Arduino, so I open Serial.list()[0].

 // Open whatever port is the one you're using (the output

 // of Serial.list() can help; the are listed in order

 // starting with the one that corresponds to [0]).

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil(linefeed);

}

void draw() {

 // twiddle your thumbs

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 // trim the carriage return and convert the string to an integer:

 sensorValue = int(trim(myString));

 println(sensorValue); // print it.

 drawGraph();

 }

}

void drawGraph() {

 // adjust this formula so that lineHeight is always less than

 // the height of the window:

 int lineHeight = sensorValue /2;

 stroke(0,255,0); // draw the line.

 line(graphPosition, height, graphPosition, height - lineHeight);

 // at the edge of the screen, go back to the beginning:

 if (graphPosition >= width) {

 graphPosition = 0;

 background(0);

 }

 else {

 graphPosition++;

 }

}

MTT_AppendixC.indd 377MTT_AppendixC.indd 377 9/6/07 1:00:59 PM9/6/07 1:00:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

378 MAKING THINGS TALK

Cat graphing program
Language: Processing
Reads in a string of characters until it gets a linefeed (ASCII
10). Then converts the string into a number. Then graphs it.
If the number has changed significantly, and there hasn’t
been a big change in more than a minute, the program
prints a text string in place of an email message.

import processing.serial.*;

int linefeed = 10; // linefeed in ASCII

Serial myPort; // The serial port

int sensorValue = 0; // the value from the sensor

int graphPosition = 0; // the horizontal position of the latest

 // line to be drawn on the graph

int prevSensorValue = 0; // the previous sensor reading

boolean catOnMat = false; // whether or not the cat's on the mat

int threshold = 320; // above this number, the cat is on the mat.

int timeThreshold = 1; // minimum number of minutes between emails

int timeLastSent[] = {

 hour(), minute() - 1 }; // time the last message was sent

void setup() {

 size(400,300);

 // List all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my Mac

 // is always my Arduino, so I open Serial.list()[0].

 // Open whatever port is the one you're using (the output

 // of Serial.list() can help; the are listed in order

 // starting with the one that corresponds to [0]).

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil(linefeed);

 println(hour() + ":" + minute());

}

void draw() {

 if (sensorValue > threshold) {

 // if the last reading was less than the threshold,

 // then the cat just got on the mat.

 if (prevSensorValue <= threshold) {

 delay(100);

 if (sensorValue > threshold) {

 catOnMat = true;

 sendMail();

 }

 }

 } else {

 // if the sensor value is less than the threshold,

 // and the previous value was greater, then the cat

 // just left the mat

 if (prevSensorValue >= threshold) {

 catOnMat = false;

 }

 }

 // save the sensor value as the previous value

 // so you can take new readings:

 prevSensorValue = sensorValue;

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 // trim the carriage return and convert the string to an integer:

 sensorValue = int(trim(myString));

 drawGraph(); // call this method instead of println()

 }

}

void drawGraph() {

 int lineHeight = sensorValue /2;

 // draw the line:

 if (catOnMat) {

 stroke(0,255,0); // draw green

 }

 else {

 stroke(255,0,0); // draw red

 }

 line(graphPosition, height, graphPosition, height - lineHeight);

 // at the edge of the screen, go back to the beginning:

 if (graphPosition >= width) {

 graphPosition = 0;

 background(0);

 }

 else {

 graphPosition++;

 }

}

void sendMail() {

 // calculate the current time in minutes:

 int[] presentTime = { hour(), minute() };

 // print the current time and the last time you sent a message:

 print(sensorValue + "\t");

 print(presentTime[0] + ":" + presentTime[1] +"\t");

 println(timeLastSent[0] + ":" + timeLastSent[1]);

Change this number to reflect the

threshold of your own sensor.

8

Adjust this to an acceptable

frequency for sending emails.

8

MTT_AppendixC.indd 378MTT_AppendixC.indd 378 9/6/07 1:01:56 PM9/6/07 1:01:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 379

 // if you're still in the same hour as the last message,

 // then make sure at least the minimum number of minutes has passed:

 if (presentTime[0] == timeLastSent[0]) {

 if (presentTime[1] - timeLastSent[1] >= timeThreshold) {

 println("This is where you'd send a mail.");

 // take note of the time this message was sent:

 timeLastSent[0] = hour();

 timeLastSent[1] = minute();

 }

 }

 // if the hour has changed since the last message,

 // then the difference in minutes is a bit more complex.

 // Use != rather than > to make sure the shift

 // from 23:59 to 0:00 is covered as well:

 if (presentTime[0] != timeLastSent[0]) {

 // calculate the difference in minutes:

 int minuteDifference = (60 - timeLastSent[1]) + presentTime[1];

 if (minuteDifference >= timeThreshold) {

 println("This is where you'd send a mail.");

 // take note of the time this message was sent:

 timeLastSent[0] = hour();

 timeLastSent[1] = minute();

 }

 }

}

Cat On Mat
Language: PHP
Expects a parameter called SensorValue, an integer. Prints
a custom message depending on the value of SensorValue.

<?php

$threshold = 320; // minimum sensor value to trigger action

// print the beginning of the HTML page:

echo "<html><head></head><body>\n";

// read all the parameters and assign them to local variables:

foreach ($_REQUEST as $key => $value) {

 if ($key == "sensorValue") {

 $sensorValue = $value;

 }

 }

// Respond depending on the sensor value:

if ($sensorValue > $threshold) {

 echo "<p> The cat is on the mat.</p>\n";

} else {

 echo "<p> the cat is not on the mat.</p>\n";

}

// finish the HTML:

echo "</body></html>\n";

?>

Mail sender
Language: PHP
Expects a parameter called SensorValue, an integer. Sends
an email if sensorValue is above a threshold value. This is
an extension of the previous program. The previous one
didn’t actually send mail, but this one does.

<?php

$threshold = 320; // minimum sensor value to trigger action.

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

// read all the parameters and assign them to local variables:

foreach ($_REQUEST as $key => $value)

 {

 if ($key == "sensorValue") {

 $sensorValue = $value;

 }

 }

if ($sensorValue > $threshold) {

 $messageString =

 " The cat is on the mat at http://www.example.com/catcam.";

 echo $messageString;

 send_mail("yourname@example.com", "the cat", $messageString);

} else {

 echo "<p> the cat is not on the mat.</p>\n";

}

// finish the HTML:

echo "</body></html>\n";

end;

// end of the main script. Anything after here won't get run

// unless it's called in the code above this line

//

function send_mail($to, $subject, $message) {

 $from = "cat@example.com";

 mail($to, $subject, $message, "From: $from");

}

?>

Change this number to reflect the
threshold of your own sensor.
8

MTT_AppendixC.indd 379MTT_AppendixC.indd 379 9/6/07 1:02:18 PM9/6/07 1:02:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

380 MAKING THINGS TALK

HTTP sender
Language: Processing
Uses the Processing net library to make an HTTP request.

import processing.net.*; // gives you access to the net library

Client client; // a new net client

boolean requestInProgress; // whether a net request is in progress

String responseString = ""; // string of text received by client

void setup()

{

 // Open a connection to the host:

 client = new Client(this, "example.com", 80);

 // Send the HTTP GET request:

 client.write(

 "GET /catcam/cat-script.php?sensorValue=321 HTTP/1.0\r\n");

 client.write("HOST: example.com\r\n\r\n");

 // note that you've got a request in progress:

 requestInProgress = true;

}

void draw()

{

 // available() returns how many bytes have been received by the client:

 if (client.available() > 0) {

 // read a byte, convert it to a character, and add it to the string:

 responseString +=char(client.read());

 // add to a line of |'s on the screen (crude progress bar):

 print("|");

 }

 // if there's no bytes available, either the response

 // hasn't started yet, or it's done:

 else {

 // if responseString is longer than 0 bytes, the response has started:

 if(responseString.length() > 0) {

 // you've got some bytes, but now there's no more to read. Stop:

 if(requestInProgress == true) {

 // print the response:

 println(responseString);

 // note that the request is over:

 requestInProgress = false;

 // reset the string for future requests:

 responseString = "";

 }

 }

 }

}

Cat graphing and email program
Language: Processing
Reads in a string of characters until it gets a linefeed (ASCII
10). Then converts the string into a number. Then graphs it.
If the number has changed significantly, and there hasn’t
been a big change in more than a minute, the program
calls a PHP script to send an email message.

import processing.serial.*;

import processing.net.*; // gives you access to the net library

int linefeed = 10; // linefeed in ASCII

Serial myPort; // The serial port

int sensorValue = 0; // the value from the sensor

int graphPosition = 0; // the horizontal position of the latest

 // line to be drawn on the graph

int prevSensorValue = 0; // the previous sensor reading

boolean catOnMat = false; // whether or not the cat's on the mat

int threshold = 330; // above this number, the cat is on the mat.

int timeThreshold = 1; // minimum number of minutes between emails

int timeLastSent[] = {hour(), minute()}; // time last message was sent

// HTTP client variables:

Client client; // a new net client

boolean requestInProgress = false; // whether a net request is in progress

String responseString = ""; // string of text received by client

void setup() {

 size(400,300);

 // List all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my mac

 // is always my Arduino, so I open Serial.list()[0].

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil(linefeed);

 println(hour() + ":" + minute());

}

void draw() {

 if (sensorValue > threshold) {

 // if the last reading was less than the threshold,

 // then the cat just got on the mat.

 if (prevSensorValue <= threshold) {

 delay(100);

 if (sensorValue > threshold) {

 catOnMat = true;

 sendMail();

 }

 }

 }

MTT_AppendixC.indd 380MTT_AppendixC.indd 380 9/6/07 1:03:04 PM9/6/07 1:03:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 381

 else {

 // if the sensor value is less than the threshold,

 // and the previous value was greater, then the cat

 // just left the mat

 if (prevSensorValue >= threshold) {

 catOnMat = false;

 }

 }

 // save the sensor value as the previous value

 // so you can take new readings:

 prevSensorValue = sensorValue;

 if (requestInProgress == true) {

 checkNetClient();

 }

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 //trim off the carriage return and convert the string to an integer:

 sensorValue = int(trim(myString)) /2 -100;

 // print it:

 // println(sensorValue);

 drawGraph();

 }

}

void drawGraph() {

 int lineHeight = sensorValue /2;

 // draw the line:

 if (catOnMat) {

 // draw green:

 stroke(0,255,0);

 }

 else {

 // draw red:

 stroke(255,0,0);

 }

 line(graphPosition, height, graphPosition, height - lineHeight);

 // at the edge of the screen, go back to the beginning:

 if (graphPosition >= width) {

 graphPosition = 0;

 background(0);

 }

 else {

 graphPosition++;

 }

}

void sendMail() {

 // calculate the current time in minutes:

 int[] presentTime = { hour(), minute() };

 // print the current time and the last time you sent a message:

 print(sensorValue + "\t");

 print(presentTime[0] + ":" + presentTime[1] +"\t");

 println(timeLastSent[0] + ":" + timeLastSent[1]);

 // if you're still in the same hour as the last message,

 // then make sure at least the minimum number of minutes has passed:

 if (presentTime[0] == timeLastSent[0]) {

 if (presentTime[1] - timeLastSent[1] >= timeThreshold) {

 println("This is where you'd send a mail.");

 makeHTTPCall();

 // take note of the time this message was sent:

 timeLastSent[0] = hour();

 timeLastSent[1] = minute();

 }

 }

 // if the hour has changed since the last message,

 // then the difference in minutes is a bit more complex.

 // Use !+ rather than > to make sure the shift

 // from 23:59 to 0:00 is covered as well:

 if (presentTime[0] != timeLastSent[0]) {

 // calculate the difference in minutes:

 int minuteDifference = (60 - timeLastSent[1]) + presentTime[1];

 if (minuteDifference >= timeThreshold) {

 println("This is where you'd send a mail.");

 makeHTTPCall();

 // take note of the time this message was sent:

 timeLastSent[0] = hour();

 timeLastSent[1] = minute();

 }

 }

}

void makeHTTPCall() {

 if (requestInProgress == false) {

 // Open a connection to the host:

 client = new Client(this, "example.com", 80);

 // form the request string:

 String requestString = "/cat-script.php?sensorValue=" +

 sensorValue;

 println(requestString);

 // Send the HTTP GET request:

 client.write("GET " + requestString + " HTTP/1.1\n");

 client.write("HOST: example.com\n\n");

 // note that you've got a request in progress:

 requestInProgress = true;

 }

}

MTT_AppendixC.indd 381MTT_AppendixC.indd 381 9/6/07 1:03:33 PM9/6/07 1:03:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

382 MAKING THINGS TALK

void checkNetClient() {

 // available() returns how many bytes have been received by the client:

 if (client.available() > 0) {

 // read a byte, convert it to a character, and add it to the string:

 responseString +=char(client.read());

 // add to a line of |'s on the screen (crude progress bar):

 print("|");

 }

 // if there's no bytes available, either the response hasn't

 // started yet, or it's done:

 else {

 // if responseString is longer than 0 bytes, the response has started:

 if(responseString.length() > 0) {

 // you've got some bytes, but now there's no more to read. Stop:

 if(requestInProgress == true) {

 // print the response:

 println(responseString);

 // note that the request is over:

 requestInProgress = false;

 // reset the string for future requests:

 responseString = "";

 }

 }

 }

}

Chapter 4

AIRNow Web Page Scraper
Language: PHP
Reads a web page and returns one line from it.

<?php

 // url of the air quality index page for New York City:

 $url =

 'http://airnow.gov/index.cfm?action=airnow.showlocal&cityid=164';

 // open the file at the URL for reading:

 $filePath = fopen ($url, "r");

 // as long as you haven't reached the end of the file:

 while (!feof($filePath))

 {

 // read one line at a time, and strip all HTML and

 // PHP tags from the line:

 $line = fgetss($filePath, 4096);

 echo $line;

 }

 fclose($filePath); // close the file at the URL, you're done!

?>

Air Quality meter
Language: Wiring/Arduino (pin numbers defined for Arduino)
Microcontroller is connected to a Lantronix serial-to-
ethernet device. This program connects to a HTTP server
through the Lantronix module, makes a HTTP GET request
for a PHP script, and parses the returned string. Lantronix
device communicates at 9600-8-n-1 non-inverted (true) serial.
Lantronix serial settings:
• Baudrate 9600, I/F Mode 4C, Flow 00
• Port 10001
• Remote IP Addr: --- none ---, Port 00000
• Connect Mode : D4
• Disconn Mode : 00
• Flush Mode : 00

// Defines for the program's status (used for status variable):

#define disconnected 0

#define connecting 1

#define connected 2

#define requesting 3

#define reading 4

#define requestComplete 5

// Defines for I/O pins:

#define connectedLED 2 // indicates when there's a TCP connection

#define requestingLED 3 // indicates a HTTP request has been made

#define readingLED 4 // indicates device is reading HTTP results

MTT_AppendixC.indd 382MTT_AppendixC.indd 382 9/6/07 1:03:59 PM9/6/07 1:03:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 383

#define requestCompleteLED 5 // indicates a successful read

#define programResetLED 6 // indicates reset of Arduino

#define deviceResetPin 7 // resets Lantronix Device

#define meterPin 11 // controls VU meter

// defines for voltmeter:

#define meterMax 130 // max value on the meter

#define meterScale 150 // my meter reads 0 - 150

// variables:

int inByte= -1; // incoming byte from serial RX

char inString[32]; // string for incoming serial data

int stringPos = 0; // string index counter

int status = 0; // Lantronix device's connection status

long lastCompletionTime = 0; // counter for delay after last completion

void setup() {

 // set all status LED pins and Lantronix device reset pin:

 pinMode(connectedLED, OUTPUT);

 pinMode(requestingLED, OUTPUT);

 pinMode(requestCompleteLED, OUTPUT);

 pinMode(programResetLED, OUTPUT);

 pinMode(deviceResetPin, OUTPUT);

 pinMode(meterPin, OUTPUT);

 // start serial port, 9600 8-N-1:

 Serial.begin(9600);

 //reset Lantronix device:

 resetDevice();

 // blink reset LED:

 blink(3);

}

void loop() {

 stateCheck();

 setLEDs();

}

/*

 Check the status of the connection and take appropriate action:

 */

void stateCheck() {

 switch (status) {

 case disconnected:

 // attempt to connect to the server:

 deviceConnect();

 break;

 case connecting:

 // until you get a C, keep trying to connect:

 // read the serial port:

 if (Serial.available()) {

 inByte = Serial.read();

 if (inByte == 'C') { // 'C' in ascii

 status = connected;

 } else {

 // if you got anything other than a C, try again:

 deviceConnect();

 }

 }

 break;

 case connected:

 // send HTTP GET request for CGI script:

 httpRequest();

 break;

 case requesting:

 lookForData();

 break;

 case reading:

 readData();

 break;

 case requestComplete:

 waitForNextRequest();

 }

}

/*

 Set the indicator LEDs according to the state of the program

 */

void setLEDs() {

 /*

 Except for the disconnected and connecting states,

 all the states of the program have corresponding LEDS.

 so you can use a for-next loop to set them by

 turning them all off except for the one that has

 the same number as the current program state:

 */

 for (int thisLED = 2; thisLED <= 5; thisLED++) {

 if (thisLED == status) {

 digitalWrite(thisLED, HIGH);

 }

 else {

 digitalWrite(thisLED, LOW);

 }

 }

}

/*

 Command the Lantronix device to connect to the server

 */

void deviceConnect() {

 // fill in your server's numerical address below:

 Serial.print("C82.165.199.35/80\n");

 status = connecting;

}

MTT_AppendixC.indd 383MTT_AppendixC.indd 383 9/6/07 1:04:37 PM9/6/07 1:04:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

384 MAKING THINGS TALK

/*

 Send a HTTP GET request

 */

void httpRequest() {

 // make sure you've cleared the last byte

 // from the last request:

 inByte = -1;

 // reset the string position counter:

 stringPos = 0;

 // Make HTTP GET request. Fill in the path to your version

 // of the CGI script:

 Serial.print("GET /~myaccount/scraper.php HTTP/1.0\n");

 // Fill in your server's name:

 Serial.print("HOST:example.com\n\n");

 // update the state of the program:

 status = requesting;

}

/*

 Read the results sent by the server until you get a < character.

 */

void lookForData() {

 // wait for bytes from server:

 if (Serial.available()) {

 inByte = Serial.read();

 // If you get a "<", what follows is the air quality index.

 // You need to read what follows the <.

 if (inByte == '<') {

 stringPos = 0;

 status = reading;

 }

 }

}

/*

 read the number from the server into an array, terminating with a > character.

 */

void readData() {

 if (Serial.available()) {

 inByte = Serial.read();

 // Keep reading until you get a ">":

 if (inByte != '>') {

 // save only ASCII numeric characters (ASCII 0 - 9):

 if ((inByte >= '0') && (inByte <= '9')){

 inString[stringPos] = inByte;

 stringPos++;

 }

 }

 // if you get a ">", you've reached the end of the AQI reading:

 else {

 interpretResults();

 }

 }

}

/*

 convert the input string to an integer.

 */

void interpretResults() {

 // convert the string to a numeric value:

 int airQuality = atoi(inString);

 setMeter(airQuality); // set the meter appropriately.

 lastCompletionTime = millis();

 status = requestComplete;

}

/*

 scale the number from the request to the meter's range and set the meter.

 */

void setMeter(int desiredValue) {

 int airQualityValue = 0;

 // if the value won't peg the meter, convert it

 // to the meter scale and send it out:

 if (desiredValue <= meterScale) {

 airQualityValue = (desiredValue * meterMax /meterScale) ;

 analogWrite(meterPin, airQualityValue);

 }

}

/*

 Wait two minutes before initiating a new request.

 */

void waitForNextRequest() {

 if (millis() - lastCompletionTime >= 120000) {

 resetDevice(); // reset Lantronix device before next request.

 status = disconnected;

 }

}

/*

 Take the Lantronix device's reset pin low to reset it

 */

void resetDevice() {

 digitalWrite(deviceResetPin, LOW);

 delay(50);

 digitalWrite(deviceResetPin, HIGH);

 delay(2000); // pause to let Lantronix device boot up.

}

/*

 Blink the reset LED.

 */

void blink(int howManyTimes) {

 int i;

 for (i=0; i< howManyTimes; i++) {

 digitalWrite(programResetLED, HIGH);

 delay(200);

 digitalWrite(programResetLED, LOW);

 delay(200);

 }

}

MTT_AppendixC.indd 384MTT_AppendixC.indd 384 9/6/07 1:05:01 PM9/6/07 1:05:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 385

SoftwareSerial example
Language: Wiring/Arduino
This program uses the SoftwareSerial library to send
serial messages on pins 8 and 9.

// include the SoftwareSerial library so you can use its functions:

#include <SoftwareSerial.h>

#define rxPin 8

#define txPin 9

// set up a new serial port

SoftwareSerial mySerial = SoftwareSerial(rxPin, txPin);

void setup() {

 // define pin modes for tx, rx, led pins:

 pinMode(rxPin, INPUT);

 pinMode(txPin, OUTPUT);

 // set the data rate for the SoftwareSerial port

 mySerial.begin(9600);

}

void loop() {

 // print out a debugging message:

 mySerial.println("Hello from SoftwareSerial");

 delay(100);

}

SoftwareSerial example
Language: Wiring/Arduino
This program is a variation on the networked air quality
meter. It uses the SoftwareSerial library to send serial
messages on pins 8 and 9.

// include the SoftwareSerial library so you can use its functions:

#include <SoftwareSerial.h>

#define rxPin 8

#define txPin 9

// Defines go here

// variables go here

// set up a new serial port

SoftwareSerial mySerial = SoftwareSerial(rxPin, txPin);

void setup() {

 // the rest of the setup() code goes here

 // define pin modes for SoftwareSerial tx, rx pins:

 pinMode(rxPin, INPUT);

 pinMode(txPin, OUTPUT);

 // set the data rate for the SoftwareSerial port

 mySerial.begin(9600);

 // print out a debugging message:

 mySerial.println("All set up");

}

void loop() {

 stateCheck();

 setLEDs();

}

void stateCheck() {

 // the rest of stateCheck() code goes here

}

void setLEDs() {

 // setLEDs() code goes here

}

void deviceConnect() {

 // print out a debugging message:

 mySerial.println("connect");

 // the rest of deviceConnect() code goes here

}

void httpRequest() {

 // print out a debugging message:

 mySerial.println("request");

 // the rest of httpRequest() code goes here

}

void lookForData() {

 // wait for bytes from server:

 if (Serial.available()) {

 inByte = Serial.read();

 mySerial.print(inByte, BYTE);

 // the rest of lookForData() code goes here

}

void readData() {

 if (Serial.available()) {

 inByte = Serial.read();

 mySerial.print(inByte, BYTE);

 // the rest of readData() code goes here

}

MTT_AppendixC.indd 385MTT_AppendixC.indd 385 9/6/07 1:05:25 PM9/6/07 1:05:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

386 MAKING THINGS TALK

void interpretResults() {

 // print out a debugging message:

 mySerial.println("interpret");

 // the rest of interpretResults() code goes here

 mySerial.println("wait"); // print out a debugging message.

}

void setMeter(int desiredValue) {

 mySerial.println("set"); // print out a debugging message.

 // the rest of setMeter() code goes here

}

void resetDevice() {

 mySerial.println("reset"); // print out a debugging message.

 // the rest of resetDevice() code goes here

}

/*

 Blink the reset LED.

 */

void blink(int howManyTimes) {

 int i;

 for (i=0; i< howManyTimes; i++) {

 digitalWrite(programResetLED, HIGH);

 delay(200);

 digitalWrite(programResetLED, LOW);

 delay(200);

 }

}

Lantronix serial-to-Ethernet HTTP
request tester
Language: Processing
This program sends serial messages to a Lantronix
serial-to-Ethernet device to get it to connect to a remote
webserver and make an HTTP request. To use this
program, connect your PC to the Lantronix module’s serial
port as you did when you were configuring the Lantronix
module earlier.

// include the serial library

import processing.serial.*;

Serial myPort; // Serial object

int step = 0; // which step in the process you're on

char linefeed = 10; // ASCII linefeed character

void setup()

{

 // get the list of serial ports:

 println(Serial.list());

 // open the serial port appropriate to your computer:

 myPort = new Serial(this, Serial.list()[2], 9600);

 // configure the serial object to buffer text until it receives a

 // linefeed character:

 myPort.bufferUntil(linefeed);

}

void draw()

{

 //no action in the draw loop

}

void serialEvent(Serial myPort) {

 // print any string that comes in serially to the monitor pane

 print(myPort.readString());

}

void keyReleased() {

 // if any key is pressed, take the next step:

 switch (step) {

 case 0:

 // open a connection to the server in question:

 myPort.write("C208.201.239.37/80\r");

 // add one to step so that the next keystroke causes the next step:

 step++;

 break;

 case 1:

 // send a HTTP GET request

 myPort.write("GET /~igoe/index.html HTTP/1.0\n");

 myPort.write("HOST:example.com\n\n");

 step++;

 break;

 }

}

MTT_AppendixC.indd 386MTT_AppendixC.indd 386 9/6/07 1:05:45 PM9/6/07 1:05:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 387

Test Server Program
Language: Processing
Creates a server that listens for clients and prints what
they say. It also sends the last client anything that’s typed
on the keyboard.

// include the net library:

import processing.net.*;

int port = 8080; // the port the server listens on

Server myServer; // the server object

Client thisClient; // incoming client object

void setup()

{

 myServer = new Server(this, port); // Start the server

}

void draw()

{

 // get the next client that sends a message:

 Client speakingClient = myServer.available();

 // if the message is not null, display what it sent:

 if (speakingClient !=null) {

 String whatClientSaid = speakingClient.readString();

 // print who sent the message, and what they sent:

 println(speakingClient.ip() + "\t" + whatClientSaid);

 }

}

// ServerEvent message is generated when a new client

// connects to the server.

void serverEvent(Server myServer, Client someClient) {

 println("We have a new client: " + someClient.ip());

 thisClient = someClient;

}

void keyReleased() {

 // only send if there's a client to send to:

 if (thisClient != null) {

 // if return is pressed, send newline and carriage feed:

 if (key == '\n') {

 thisClient.write("\r\n");

 }

 // send any other key as is:

 else {

 thisClient.write(key);

 }

 }

}

Chapter 5

Pong client
Language: Wiring/Arduino
This program enables an Arduino to control one
paddle in a networked Pong game. This listing uses the
readSensors() method from the seesaw client in project #7.

// Defines for the Lantronix device's status (used for staus variable):

#define disconnected 0

#define connected 1

#define connecting 2

// Defines for I/O pins:

#define connectButtonPin 2

#define rightLED 3

#define leftLED 4

#define connectionLED 5

#define connectButtonLED 6

#define deviceResetPin 7

// variables:

int inByte= -1; // incoming byte from serial RX

int status = disconnected; // Lantronix device's connection status

// variables for the sensors:

byte connectButton = 0; // state of the exit button

byte lastConnectButton = 0; // previous state of the exit button

/*

 When the connect button is pressed, or the accelerometer

 passes the left or right threshold, the client should send a message

 to the server. The next two variables get filled with a value

 when either of those conditions is met. Otherwise, these

 variables are set to 0.

 */

byte paddleMessage = 0; // message sent to make a paddle move

byte connectMessage = 0; // message sent to connect or disconnect

void setup() {

 // set the modes of the various I/O pins:

 pinMode(connectButtonPin, INPUT);

 pinMode(rightLED, OUTPUT);

 pinMode(leftLED, OUTPUT);

 pinMode(connectionLED, OUTPUT);

 pinMode(connectButtonLED, OUTPUT);

 pinMode(deviceResetPin, OUTPUT);

 // start serial port, 9600 8-N-1:

 Serial.begin(9600);

 // reset the Lantronix device:

 resetDevice();

 // blink the exit button LED to signal that we're ready for action:

 blink(3);

}

MTT_AppendixC.indd 387MTT_AppendixC.indd 387 9/6/07 1:06:07 PM9/6/07 1:06:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

388 MAKING THINGS TALK

void loop() {

 // read the inputs:

 readSensors();

 // set the indicator LEDS:

 setLeds();

 // check the state of the client and take appropriate action:

 stateCheck();

}

void readSensors() {

 // thresholds for the accelerometer values:

 int leftThreshold = 500;

 int rightThreshold = 420;

 // read the X axis of the accelerometer:

 int x = analogRead(0);

 // let the analog/digital converter settle:

 delay(10);

 // if the accelerometer has passed either threshold,

 // set paddleMessage to the appropriate message, so it can

 // be sent by the main loop:

 if (x > leftThreshold) {

 paddleMessage = 'l';

 } else if (x < rightThreshold) {

 paddleMessage = 'r';

 } else {

 paddleMessage = 0;

 }

// read the connectButton, look for a low-to-high change:

 connectButton = digitalRead(connectButtonPin);

 connectMessage = 0;

 if (connectButton == HIGH) {

 if (connectButton != lastConnectButton) {

 // turn on the exit button LED to let the user

 // know that they hit the button:

 digitalWrite(connectButtonLED, HIGH);

 connectMessage = 'x';

 }

 }

 // save the state of the exit button for next time you check:

 lastConnectButton = connectButton;

}

void setLeds() {

 // this should happen no matter what state the client is in,

 // to give local feedback every time a sensor senses a change

 // set the L and R LEDs if the sensor passes the appropriate

threshold:

 switch (paddleMessage) {

 case 'l':

 digitalWrite(leftLED, HIGH);

 digitalWrite(rightLED, LOW);

 break;

 case 'r':

 digitalWrite(rightLED, HIGH);

 digitalWrite(leftLED, LOW);

 break;

 case 0:

 digitalWrite(rightLED, LOW);

 digitalWrite(leftLED, LOW);

 }

 // set the connect button LED based on the connectMessage:

 if (connectMessage !=0) {

 digitalWrite(connectButtonLED, HIGH);

 }

 else {

 digitalWrite(connectButtonLED, LOW);

 }

 // set the connection LED based on the client's status:

 if (status == connected) {

 // turn on the connection LED:

 digitalWrite(connectionLED, HIGH);

 }

 else {

 // turn off the connection LED:

 digitalWrite(connectionLED, LOW);

 }

}

void stateCheck() {

 // Everything in this method depends on the client's status:

 switch (status) {

 case connected:

 // if you're connected, listen for serial in:

 while (Serial.available() > 0) {

 // if you get a 'D', it's from the Lantronix device,

 // telling you that it lost the connection:

 if (Serial.read() == 'D') {

 status = disconnected;

 }

 }

 // if there's a paddle message to send, send it:

 if (paddleMessage != 0) {

 Serial.print(paddleMessage);

 // reset paddleMessage to 0 once you've sent the message:

 paddleMessage = 0;

 }

 // if there's a connect message to send, send it:

 if (connectMessage != 0) {

 // if you're connected, disconnect:

 Serial.print(connectMessage);

 // reset connectMessage to 0 once you've sent the message:

 connectMessage = 0;

 }

 break;

MTT_AppendixC.indd 388MTT_AppendixC.indd 388 9/6/07 1:06:26 PM9/6/07 1:06:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 389

 case disconnected:

 // if there's a connect message, try to connect:

 if (connectMessage !=0) {

 deviceConnect();

 // reset connectMessage to 0 once you've sent the message:

 connectMessage = 0;

 }

 break;

 // if you sent a connect message but haven't connected yet,

 // keep trying:

 case connecting:

 // read the serial port:

 if (Serial.available()) {

 inByte = Serial.read();

 // if you get a 'C' from the Lantronix device,

 // then you're connected to the server:

 if (inByte == 'C') {

 status = connected;

 }

 else {

 // if you got anything other than a C, try again:

 deviceConnect();

 }

 }

 break;

 }

}

void deviceConnect() {

 /*

 send out the server address and

 wait for a "C" byte to come back.

 fill in your personal computer's numerical address below:

 */

 Serial.print("C192.168.1.20/8080\n\r");

 status = connecting;

}

// Take the Lantronix device's reset pin low to reset it:

void resetDevice() {

 digitalWrite(deviceResetPin, LOW);

 delay(50);

 digitalWrite(deviceResetPin, HIGH);

 // pause to let Lantronix device boot up:

 delay(2000);

}

// Blink the connect button LED:

void blink(int howManyTimes) {

 for (int i=0; i< howManyTimes; i++) {

 digitalWrite(connectButtonLED, HIGH);

 delay(200);

 digitalWrite(connectButtonLED, LOW);

 delay(200);

 }

}

Pong Server
Language: Processing
This program listens for TCP socket connections and uses
the data from the incoming connections in a networked
multiplayer version of pong.

// include the net library:

import processing.net.*;

// variables for keeping track of clients:

int port = 8080; // the port the server listens on

Server myServer; // the server object

ArrayList playerList = new ArrayList(); // list of clients

// Variables for keeping track of the game play and graphics:

int ballSize = 10; // the size of the ball

int ballDirectionV = 2; // the ball's horizontal direction.

 // left is negative, right is positive

int ballDirectionH = 2; // the ball's vertical direction.

 // up is negative, down is positive

int ballPosV, ballPosH; // the ball's vertical/horizontal

 // and vertical positions

boolean ballInMotion = false; // whether the ball should be moving

int topScore, bottomScore; // scores for the top team and

 // the bottom teams

int paddleHeight = 10; // vertical dimension of the paddles

int paddleWidth = 80; // horizontal dimension of the paddles

int nextTopPaddleV; // paddle positions for the next player

 // to be created

int nextBottomPaddleV;

boolean gameOver = false; // whether a game is in progress

float delayCounter = millis(); // a counter for the delay after

 // a game is over

long gameOverDelay = 4000; // pause after each game

long pointDelay = 2000; // pause after each point

void setup() {

 // set up all the pong details:

 pongSetup();

 // Start the server:

 myServer = new Server(this, port);

}

void pongSetup() {

 // set the window size:

 size(480, 640);

 // set the frame rate:

 frameRate(90);

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 18);

 textFont(myFont);

MTT_AppendixC.indd 389MTT_AppendixC.indd 389 9/6/07 1:06:46 PM9/6/07 1:06:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

390 MAKING THINGS TALK

 // set the default font settings:

 textFont(myFont, 18);

 textAlign(CENTER);

 // initalize paddle positions for the first player.

 // these will be incremented with each new player:

 nextTopPaddleV = 50;

 nextBottomPaddleV = height - 50;

 // initialize the ball in the center of the screen:

 ballPosV = height / 2;

 ballPosH = width / 2;

 // set no borders on drawn shapes:

 noStroke();

 // set the rectMode so that all rectangle dimensions

 // are from the center of the rectangle (see Processing reference):

 rectMode(CENTER);

}

void draw() {

 pongDraw();

 listenToClients();

}

// The ServerEvent message is generated when a new client

// connects to the server.

void serverEvent(Server someServer, Client someClient) {

 boolean isPlayer = false;

 if (someClient != null) {

 // iterate over the playerList:

 for (int p = 0; p < playerList.size(); p++) {

 // get the next object in the ArrayList and convert it

 // to a Player:

 Player thisPlayer = (Player)playerList.get(p);

 // if thisPlayer's client matches the one that generated

 // the serverEvent, then this client is already a player:

 if (thisPlayer.client == someClient) {

 // we already have this client

 isPlayer = true;

 }

 }

 // if the client isn't already a Player, then make a new Player

 // and add it to the playerList:

 if (!isPlayer) {

 makeNewPlayer(someClient);

 }

 }

}

void makeNewPlayer(Client thisClient) {

 // paddle position for the new Player:

 int h = width/2;

 int v = 0;

 /*

 Get the paddle position of the last player on the list.

 If it's on top, add the new player on the bottom, and vice versa.

 If there are no other players, add the new player on the top.

 */

 // get the size of the list:

 int listSize = playerList.size() - 1;

 // if there are any other players:

 if (listSize >= 0) {

 // get the last player on the list:

 Player lastPlayerAdded = (Player)playerList.get(listSize);

 // is the last player's on the top, add to the bottom:

 if (lastPlayerAdded.paddleV == nextTopPaddleV) {

 nextBottomPaddleV = nextBottomPaddleV - paddleHeight * 2;

 v = nextBottomPaddleV;

 }

 // is the last player's on the bottom, add to the top:

 else if (lastPlayerAdded.paddleV == nextBottomPaddleV) {

 nextTopPaddleV = nextTopPaddleV + paddleHeight * 2;

 v = nextTopPaddleV;

 }

 }

 // if there are no players, add to the top:

 else {

 v = nextTopPaddleV;

 }

 // make a new Player object with the position you just calculated

 // and using the Client that generated the serverEvent:

 Player newPlayer = new Player(h, v, thisClient);

 // add the new Player to the playerList:

 playerList.add(newPlayer);

 // Announce the new Player:

 print("We have a new player: ");

 println(newPlayer.client.ip());

 newPlayer.client.write("hi\r\n");

}

void listenToClients() {

 // get the next client that sends a message:

 Client speakingClient = myServer.available();

 Player speakingPlayer = null;

 // iterate over the playerList to figure out whose

 // client sent the message:

 for (int p = 0; p < playerList.size(); p++) {

 // get the next object in the ArrayList and convert it

 // to a Player:

 Player thisPlayer = (Player)playerList.get(p);

MTT_AppendixC.indd 390MTT_AppendixC.indd 390 9/6/07 1:07:05 PM9/6/07 1:07:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 391

 // compare the client of thisPlayer to the client that sent a

 // message. If they're the same, then this is the Player we want:

 if (thisPlayer.client == speakingClient) {

 speakingPlayer = thisPlayer;

 }

 }

 // read what the client sent:

 if (speakingPlayer != null) {

 int whatClientSaid = speakingPlayer.client.read();

 /*

 There a number of things it might have said that we care about:

 x = exit

 l = move left

 r = move right

 */

 switch (whatClientSaid) {

 // If the client says "exit", disconnect it

 case 'x':

 // say goodbye to the client:

 speakingPlayer.client.write("bye\r\n");

 // disconnect the client from the server:

 println(speakingPlayer.client.ip() + "\t left");

 myServer.disconnect(speakingPlayer.client);

 // remove the client's Player from the playerList:

 playerList.remove(speakingPlayer);

 break;

 case 'l':

 // if the client sends an "l", move the paddle left

 speakingPlayer.movePaddle(-10);

 break;

 case'r':

 // if the client sends a "r", move the paddle right

 speakingPlayer.movePaddle(10);

 break;

 }

 }

}

void pongDraw() {

 background(0);

 // draw all the paddles

 for (int p = 0; p < playerList.size(); p++) {

 Player thisPlayer = (Player)playerList.get(p);

 // show the paddle for this player:

 thisPlayer.showPaddle();

 }

 // calculate ball's position:

 if (ballInMotion) {

 moveBall();

 }

 // Draw the ball:

 rect(ballPosH, ballPosV, ballSize, ballSize);

 // show the score:

 showScore();

 // if the game is over, show the winner:

 if (gameOver) {

 textSize(24);

 gameOver = true;

 text("Game Over", width/2, height/2 - 30);

 if (topScore > bottomScore) {

 text("Top Team Wins!", width/2, height/2);

 }

 else {

 text("Bottom Team Wins!", width/2, height/2);

 }

 }

 // pause after each game:

 if (gameOver && (millis() > delayCounter + gameOverDelay)) {

 gameOver = false;

 newGame();

 }

 // pause after each point:

 if (!gameOver && !ballInMotion && (millis() >

 delayCounter + pointDelay)) {

 // make sure there are at least two players:

 if (playerList.size() >=2) {

 ballInMotion = true;

 }

 else {

 ballInMotion = false;

 textSize(24);

 text("Waiting for two players", width/2, height/2 - 30);

 }

 }

}

void moveBall() {

 // Check to see if the ball contacts any paddles:

 for (int p = 0; p < playerList.size(); p++) {

 // get the player to check:

 Player thisPlayer = (Player)playerList.get(p);

 // calculate the horizontal edges of the paddle:

 float paddleRight = thisPlayer.paddleH + paddleWidth/2;

 float paddleLeft = thisPlayer.paddleH - paddleWidth/2;

 // check whether the ball is in the horizontal range of the paddle:

 if ((ballPosH >= paddleLeft) && (ballPosH <= paddleRight)) {

 // calculate the vertical edges of the paddle:

 float paddleTop = thisPlayer.paddleV - paddleHeight/2;

 float paddleBottom = thisPlayer.paddleV + paddleHeight/2;

MTT_AppendixC.indd 391MTT_AppendixC.indd 391 9/6/07 1:07:31 PM9/6/07 1:07:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

392 MAKING THINGS TALK

 // check to see if the ball is in the

 // horizontal range of the paddle:

 if ((ballPosV >= paddleTop) && (ballPosV <= paddleBottom)) {

 // reverse the ball vertical direction:

 ballDirectionV = -ballDirectionV;

 }

 }

 }

 // if the ball goes off the screen top:

 if (ballPosV < 0) {

 bottomScore++;

 ballDirectionV = int(random(2) + 1) * -1;

 resetBall();

 }

 // if the ball goes off the screen bottom:

 if (ballPosV > height) {

 topScore++;

 ballDirectionV = int(random(2) + 1);

 resetBall();

 }

 // if any team goes over 5 points, the other team loses:

 if ((topScore > 5) || (bottomScore > 5)) {

 delayCounter = millis();

 gameOver = true;

 }

 // stop the ball going off the left or right of the screen:

 if ((ballPosH - ballSize/2 <= 0) || (ballPosH +ballSize/2 >=width)) {

 // reverse the y direction of the ball:

 ballDirectionH = -ballDirectionH;

 }

 // update the ball position:

 ballPosV = ballPosV + ballDirectionV;

 ballPosH = ballPosH + ballDirectionH;

}

void newGame() {

 gameOver = false;

 topScore = 0;

 bottomScore = 0;

}

public void showScore() {

 textSize(24);

 text(topScore, 20, 40);

 text(bottomScore, 20, height - 20);

}

void resetBall() {

 // put the ball back in the center

 ballPosV = height/2;

 ballPosH = width/2;

 ballInMotion = false;

 delayCounter = millis();

}

public class Player {

 // declare variables that belong to the object:

 float paddleH, paddleV;

 Client client;

 public Player (int hpos, int vpos, Client someClient) {

 // initialize the localinstance variables:

 paddleH = hpos;

 paddleV = vpos;

 client = someClient;

 }

 public void movePaddle(float howMuch) {

 float newPosition = paddleH + howMuch;

 // constrain the paddle's position to the width of the window:

 paddleH = constrain(newPosition, 0, width);

 }

 public void showPaddle() {

 rect(paddleH, paddleV, paddleWidth, paddleHeight);

 // display the address of this player near its paddle

 textSize(12);

 text(client.ip(), paddleH, paddleV - paddleWidth/8);

 }

}

MTT_AppendixC.indd 392MTT_AppendixC.indd 392 9/6/07 1:07:52 PM9/6/07 1:07:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 393

Chapter 6

IR transmit example
Language: Wiring/Arduino
This program reads an analog input on pin 0 and sends
the result out as an ASCII-encoded string. The TX line of
the microcontroller is connected to a Rentron TX-IRHS IR
transmitter which can transmit at 19200 bps.

void setup(){

 //Open the serial port at 19200 bps:

 Serial.begin(19200);

}

void loop(){

 // Read the analog input:

 int analogValue = analogRead(0);

 // send the value out via the transmitter:

 Serial.println(analogValue, DEC);

 // delay 10ms to allow the analog-to-digital receiver to settle:

 delay(10);

}

RF Transmitter
Language: Wiring/Arduino
This program reads an analog input on pin 0 and sends the
result out as an ASCII-encoded string. The TX line of the
microcontroller is connected to an RF transmitter that is
capable of reading at 2400 bps.

void setup(){

 // Open the serial port at 2400 bps:

 Serial.begin(2400);

}

void loop(){

 // Read the analog input:

 int analogValue = analogRead(0);

 // send the value out via the transmitter:

 Serial.println(analogValue, DEC);

 // delay 10ms to allow the analog-to-digital receiver to settle:

 delay(10);

}

RF Receive
Language: Processing
This program listens for data coming in through a serial
port. It reads a string and throws out any strings that
contain values other than ASCII numerals, linefeed, or
carriage return, or that are longer than four digits. This
program is designed to work with a Laipac RF serial receiver
connected to the serial port, operating at 2400 bps.

import processing.serial.*;

Serial myPort; // the serial port

int incomingValue = 0; // the value received in the serial port

void setup() {

 // list all the available serial ports:

 println(Serial.list());

 // open the appropriate serial port. On my computer, the RF

 // receiver is connected to a USB-to-serial adaptor connected to

 // the first port in the list. It may be on a different port on

 // your machine:

 myPort = new Serial(this, Serial.list()[0], 2400);

 // tell the serial port not to generate a serialEvent

 //until a linefeed is received:

 myPort.bufferUntil('\n');

}

void draw() {

 // set the background color according to the incoming value:

 background(incomingValue/4);

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 boolean validString = true; // whether the string you got is valid

 String errorReason = ""; // a string that tells what went wrong

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // make sure you have a valid string:

 if (myString != null) {

 // trim off the whitespace (linefeed, carriage return) characters:

 myString = trim(myString);

 // check for garbage characters:

 for (int charNum = 0; charNum < myString.length(); charNum++) {

 if (myString.charAt(charNum) < '0' ||

 myString.charAt(charNum) > '9') {

MTT_AppendixC.indd 393MTT_AppendixC.indd 393 9/6/07 1:08:17 PM9/6/07 1:08:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

394 MAKING THINGS TALK

 // you got a garbage byte; throw the whole string out

 validString = false;

 errorReason =

 "Received a byte that's not a valid ASCII numeral.";

 }

 }

 // check to see that the string length is appropriate:

 if (myString.length() > 4) {

 validString = false;

 errorReason = "Received more than 4 bytes.";

 }

 // if all's good, convert the string to an int:

 if (validString == true) {

 incomingValue = int(trim(myString));

 println("Good value: " + incomingValue);

 } else {

 // if the data is bad, say so:

 println("Error: Data is corrupted. " + errorReason);

 }

 }

}

XBee terminal
Language: Processing
This program is a basic serial terminal program. It replaces
newline characters from the keyboard with return characters.
You need it to talk to XBee radios with Linux/Unix/Mac OS
X because the XBees don’t send newline characters back.

import processing.serial.*;

Serial myPort; // the serial port you're using

String portnum; // name of the serial port

String outString = ""; // the string being sent out the serial port

String inString = ""; // the string coming in from the serial port

int receivedLines = 0; // how many lines have been received

int bufferedLines = 10; // number of incoming lines to keep

void setup() {

 size(400, 300); // window size

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 14);

 textFont(myFont);

 // list all the serial ports:

 println(Serial.list());

 // based on the list of serial ports printed from the

 // previous command, change the 0 to your port's number:

 portnum = Serial.list()[0];

 // initialize the serial port:

 myPort = new Serial(this, portnum, 9600);

}

void draw() {

 background(0); // clear the screen.

 // print the name of the serial port:

 text("Serial port: " + portnum, 10, 20);

 // Print out what you get:

 text("typed: " + outString, 10, 40);

 text("received:\n" + inString, 10, 80);

}

// This method responds to key presses when the

// program window is active:

void keyPressed() {

 switch (key) {

 // In Unix/Linux/OS X, if the user types return, a linefeed is

 // returned. But the XBee wants a carriage return:

 case '\n':

 myPort.write(outString + "\r");

 outString = "";

 break;

 case 8: // backspace

 // delete the last character in the string:

 outString = outString.substring(0, outString.length() -1);

 break;

 case '+': // we have to send the + signs even without a return:

 myPort.write(key);

 // add the key to the end of the string:

 outString += key;

 break;

 case 65535: // If the user types the shift key, don't type anything:

 break;

 default: // any other key typed, add it to outString:

 // add the key to the end of the string:

 outString += key;

 break;

 }

}

// this method runs when bytes show up in the serial port:

void serialEvent(Serial myPort) {

 // read the next byte from the serial port:

 int inByte = myPort.read();

 // add it to inString:

 inString += char(inByte);

 if (inByte == '\r') {

 // if the byte is a carriage return, print

 // a newline and carriage return:

 inString += '\n';

 // count the number of newlines:

 receivedLines++;

 // if there are more than 10 lines, delete the first one:

 if (receivedLines > bufferedLines) {

 deleteFirstLine();

 }

 }

}

MTT_AppendixC.indd 394MTT_AppendixC.indd 394 9/6/07 1:08:40 PM9/6/07 1:08:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 395

// deletes the top line of inString so that it all fits on the screen:

void deleteFirstLine() {

 // find the first newline:

 int firstChar = inString.indexOf('\n');

 // delete it:

 inString= inString.substring(firstChar+1);

}

XBee Analog Duplex sender
Language: Wiring/Arduino
This sketch configures an XBee radio via the serial port,
sends the value of an analog sensor out, and listens for
input from the radio, using it to set the value of a PWM
output. Thanks to Robert Faludi for the critique and
improvements.

#define sensorPin 0 // input sensor

#define txLed 2 // LED to indicate outgoing data

#define rxLed 3 // LED to indicate incoming data

#define analogLed 9 // LED that changes brightness with

 // incoming value

#define threshold 10 // how much change you need to see on

 // the sensor before sending

int lastSensorReading = 0; // previous state of the switch

int inByte= -1; // incoming byte from serial RX

char inString[6]; // string for incoming serial data

int stringPos = 0; // string index counter

void setup() {

 // configure serial communications:

 Serial.begin(9600);

 // configure output pins:

 pinMode(txLed, OUTPUT);

 pinMode(rxLed, OUTPUT);

 pinMode (analogLed, OUTPUT);

 // set XBee's destination address:

 setDestination();

 // blink the TX LED to indicate the main program's about to start:

 blink(3);

}

void setDestination() {

 // put the radio in command mode:

 Serial.print("+++");

 // wait for the radio to respond with "OK\r"

 char thisByte = 0;

 while (thisByte != '\r') {

 if (Serial.available() > 0) {

 thisByte = Serial.read();

 }

 }

 // set the destination address, using 16-bit addressing.

 // if you're using two radios, one radio's destination

 // should be the other radio's MY address, and vice versa:

 Serial.print("ATDH0, DL5678\r");

 // set my address using 16-bit addressing:

 Serial.print("ATMY1234\r");

 // set the PAN ID. If you're working in a place where many people

 // are using XBees, you should set your own PAN ID distinct

 // from other projects.

 Serial.print("ATID1111\r");

 // put the radio in data mode:

 Serial.print("ATCN\r");

}

// Blink the tx LED:

void blink(int howManyTimes) {

 for (int i=0; i< howManyTimes; i++) {

 digitalWrite(txLed, HIGH);

 delay(200);

 digitalWrite(txLed, LOW);

 delay(200);

 }

}

void loop() {

 // listen for incoming serial data:

 if (Serial.available() > 0) {

 // turn on the RX LED whenever you're reading data:

 digitalWrite(rxLed, HIGH);

 handleSerial();

 }

 else {

 // turn off the receive LED when there's no incoming data:

 digitalWrite(rxLed, LOW);

 }

 // listen to the potentiometer:

 char sensorValue = readSensor();

 // if there's something to send, send it:

 if (sensorValue > 0) {

 //light the tx LED to say you're sending:

 digitalWrite(txLed, HIGH);

 Serial.print(sensorValue, DEC);

 Serial.print("\r");

 // turn off the tx LED:

 digitalWrite(txLed, LOW);

 }

}

void handleSerial() {

 inByte = Serial.read();

 // save only ASCII numeric characters (ASCII 0 - 9):

 if ((inByte >= '0') && (inByte <= '9')){

 inString[stringPos] = inByte;

 stringPos++;

 }

MTT_AppendixC.indd 395MTT_AppendixC.indd 395 9/6/07 1:09:01 PM9/6/07 1:09:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

396 MAKING THINGS TALK

 // if you get an ASCII carriage return:

 if (inByte == '\r') {

 // convert the string to a number:

 int brightness = atoi(inString);

 // set the analog output LED:

 analogWrite(analogLed, brightness);

 // put zeroes in the array

 for (int c = 0; c < stringPos; c++) {

 inString[c] = 0;

 }

 // reset the string pointer:

 stringPos = 0;

 }

}

char readSensor() {

 char message = 0;

 // read the sensor:

 int sensorReading = analogRead(sensorPin);

 // look for a change from the last reading

 // that's greater than the threshold:

 if (abs(sensorReading - lastSensorReading) > threshold) {

 message = sensorReading/4;

 lastSensorReading = sensorReading;

 }

 return message;

}

BlueRadios Master Connection
Language: Wiring/Arduino
This program assumes that the microcontroller is
connected to a BlueRadios bluetooth radio, and that
the radio is in master mode. When the program starts,
it releases the CTSpin pin of the radio, so the radio can
send data to the microcontroller. Then it sends a connect
message and listens. If more than 5 seconds passes, it
attempts to connect again. If it receives a comma, which
only appears in the CONNECT,<address> string, it assumes
the radio is connected and starts sending data. If it receives
an S, it assumes the radio is disconnected and stops sending.

#define sensorPin 0 // input sensor

#define txLed 2 // LED to indicate outgoing data

#define rxLed 3 // LED to indicate incoming data

#define CTSpin 4 // Clear-to-send pin

#define analogLed 9 // LED that will change brightness with

 // incoming value

#define threshold 10 // how much change you need to see on the

 // sensor before sending

byte lastSensorReading = 0; // previous state of the pot

long lastConnectTry; // milliseconds elapsed since the last

 // connection attempt

long connectTimeout = 5000; // milliseconds to wait between

 // connection attempts

int inByte= -1; // incoming byte from serial RX

char inString[6]; // string for incoming serial data

int stringPos = 0; // string index counter

// address of the remote BT radio.

char remoteAddress[13] = "112233445566";

byte connected = false; // whether you're connected or not

void setup() {

 // configure serial communications:

 Serial.begin(9600);

 // configure output pins:

 pinMode(txLed, OUTPUT);

 pinMode(rxLed, OUTPUT);

 pinMode (analogLed, OUTPUT);

 pinMode(CTSpin, OUTPUT);

 // set CTS low so BlueSMiRF can send you serial data:

 digitalWrite(CTSpin, LOW);

 // Attempt a connection:

 BTConnect();

 // blink the tx LED to say you're done with setup:

 blink(3);

}

void BTConnect() {

 Serial.print("+++\r");

 delay(250);

 Serial.print("ATDH\r");

 Serial.print("ATDM");

 Serial.print(remoteAddress);

 Serial.print(",1101\r");

}

int readSensor() {

 int message = 0;

 // read the sensor:

 int sensorReading = analogRead(sensorPin);

 // look for a change from the last reading

 // that's greater than the threshold:

 if (abs(sensorReading - lastSensorReading) > threshold) {

 message = sensorReading/4;

 lastSensorReading = sensorReading;

 }

 return message;

}

Replace with the address
of your remote radio
8

MTT_AppendixC.indd 396MTT_AppendixC.indd 396 9/6/07 1:09:23 PM9/6/07 1:09:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 397

void blink(int howManyTimes) {

 for (int i=0; i< howManyTimes; i++) {

 digitalWrite(txLed, HIGH);

 delay(200);

 digitalWrite(txLed, LOW);

 delay(200);

 }

}

void loop() {

 if (Serial.available() > 0) {

 // signal that there's incoming data using the rx LED:

 digitalWrite(rxLed, HIGH);

 // do something with the incoming byte:

 handleSerial();

 // turn the rx LED off.

 digitalWrite(rxLed, LOW);

 }

 // if you're not connected and 5 seconds have passed in that state,

 // make an attempt to connect to the other radio:

 if (!connected && millis() - lastConnectTry > connectTimeout) {

 BTConnect();

 lastConnectTry = millis();

 }

}

void handleSerial() {

 inByte = Serial.read();

 delay(2);

 // comma comes only in the CONNECT,<address> message:

 if (inByte == ',') {

 // send an initial message:

 sendData();

 // update the connection status:

 connected = true;

 }

 //S comes only in the DISCONNECT message:

 if (inByte == 'S') {

 // turn off the analog LED:

 analogWrite(analogLed, 0);

 connected = false;

 }

 //R comes only in the NO CARRIER and NO ANSWER messages:

 if (inByte == 'R') {

 // turn off the analog LED:

 analogWrite(analogLed, 0);

 connected = false;

 }

 if (connected) {

 // save only ASCII numeric characters (ASCII 0 - 9):

 if ((inByte >= '0') && (inByte <= '9')){

 inString[stringPos] = inByte;

 stringPos++;

 }

 // if you get an asterisk, it's the end of a string:

 if (inByte == '*') {

 // convert the string to a number:

 int brightness = atoi(inString);

 // set the analog output LED:

 analogWrite(analogLed, brightness);

 // put zeroes in the array

 for (int c = 0; c < stringPos; c++) {

 inString[c] = 0;

 }

 // reset the string pointer:

 stringPos = 0;

 // Since this byte (*) is the end of an incoming string,

 // send out your reading in response:

 sendData();

 }

 }

}

void sendData() {

 // indicate that we're sending using the tx LED:

 digitalWrite(txLed, HIGH);

 Serial.print(readSensor(), DEC);

 // string termination:

 Serial.print("*");

 // turn off the tx LED:

 digitalWrite(txLed, LOW);

}

MTT_AppendixC.indd 397MTT_AppendixC.indd 397 9/6/07 1:09:51 PM9/6/07 1:09:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

398 MAKING THINGS TALK

Chapter 7

Lantronix UDP Device Query
Language: Processing
Sends out a UDP broadcast packet to query a subnet for
Lantronix serial-to-ethernet devices. Lantronix devices
are programmed to respond to UDP messages received
on port 30718. If a Lantronix device receives the string
0x00 0x00 0x00 0xF6, it responds with a UDP packet
containing the status message on port 30718. When the
program starts, press any key on the keyboard and watch
the message pane for responses. See the Lantronix inte-
gration guide from www.lantronix.com for the details. This
program uses the Hypermedia UDP library available at
hypermedia.loeil.org/processing/

// import UDP library

import hypermedia.net.*;

UDP udp; // define the UDP object

int queryPort = 30718; // the port number for the device query

void setup() {

 // create a new connection to listen for

 // UDP datagrams on query port;

 udp = new UDP(this, queryPort);

 // listen for incoming packets:

 udp.listen(true);

}

void draw() {

 // twiddle your thumbs. Everything is event-generated.

}

/*

 send the query message when any key is pressed:

 */

void keyPressed() {

 byte[] queryMsg = new byte[4];

 queryMsg[0] = 0x00;

 queryMsg[1] = 0x00;

 queryMsg[2] = 0x00;

 // because 0xF6 (decimal value 246) is greater than 128

 // you have to explicitly convert it to a byte:

 queryMsg[3] = byte(0xF6);

 // send the message

 udp.send(queryMsg, "255.255.255.255", queryPort);

 println("UDP Query sent");

}

/*

 listen for responses via UDP

 */

void receive(byte[] data, String ip, int port) {

 String inString = new String(data); // incoming data as a string

 int[] intData = int(data); // data converted to ints

 int i = 0; // counter

 // print the result:

 println("response from "+ip+" on port "+port);

 // parse the response for the appropriate data.

 // if the fourth byte is <F7>, we got a status reply:

 print("Received response: ");

 println(hex(intData[3],2));

 if (intData[3] == 0xF7) {

 // MAC address of the sender is bytes 24 to 30 (the end):

 print("MAC Addr: ");

 for (i=24; i < intData.length; i++) {

 print(" " + hex(intData[i], 2));

 }

 }

 // print 2 lines to separate messages from multiple responders:

 print("\n\n");

}

Toxic Report
Language: PHP
This program opens a socket connection to an Xport and
reads bytes from the socket. It then sorts the bytes into
packets, interprets the packets, reports the results, and
saves them to a data log file.

<?php

// Global variables.

// These can be used by any of the script's functions:

global $ip, $port, $packetsToRead, $timeStamp, $messageString;

$ip = "192.168.1.236"; // IP address to connect to

$port = 10001; // port number of IP.

$packetsToRead = 10; // total number of packets to read

$totalAverage = 0; // the summary of all sensor readings

$packetCounter = 0; // counter for packets as you read them

$bytes = array(); // array for bytes when you're reading them

$packets = array(); // array to hold the arrays of bytes

// $messageString is used to return messages for printing in the HTML:

$messageString = "No Sensor Reading Taken";

Fill in the IP address of your Xport here8

MTT_AppendixC.indd 398MTT_AppendixC.indd 398 9/6/07 1:10:16 PM9/6/07 1:10:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 399

// Get the time and date:

$timeStamp = $date = date("m-d-Y H:i:s");

//if a filled textbox was submitted, get the values:

if ((isset($_POST["ip"])) && (isset($_POST["port"])) &&

 (isset($_POST["packetsToRead"]))) {

 $ip = $_POST["ip"];

 $port = $_POST["port"];

 $packetsToRead = $_POST["packetsToRead"];

}

// open a socket to the Xport:

$mySocket = fsockopen ($ip, $port, $errorno, $errorstr, 30);

if (!$mySocket) {

 //if the socket didn't open, return an error message

 return "Error $errorno: $errorstr
";

} else {

 // if the socket exists, read packets until you've reached

 // $packetsToRead:

 while ($packetCounter < $packetsToRead) {

 // read a character from the socket connection,

 // and convert it to a numeric value using ord(),

 $char = ord(fgetc($mySocket));

 // if you got a header byte, deal with the last array

 // of bytes first:

 if ($char == 0x7E) {

 // push the last byte array onto the end

 // of the packet array:

 array_push($packets, $bytes);

 $bytes = array(); // clear the byte array.

 // increment the packet counter:

 $packetCounter++;

 }

 // push the current byte onto the end of the byte array:

 array_push($bytes, $char);

 }

 // average the readings from all the packets to get a final

 // sensor reading:

 $totalAverage = averagePackets($packets);

 // update the message for the HTML:

 $messageString =

 "Sensor Reading at:". $timeStamp . ": " . $totalAverage;

 // if you got a good reading, write it to the datalog file:

 if ($totalAverage > 0) {

 writeToFile($totalAverage);

 }

 //close the socket:

 fclose ($mySocket);

}

function averagePackets($whichArray) {

 $packetAverage = 0; // average of all the sensor readings

 $validReadings = 0; // number of valid readings

 $readingsTotal = 0; // total of all readings, for averaging

 // iterate over the packet array:

 foreach ($whichArray as $thisPacket) {

 // parse each packet to get the average sensor reading:

 $thisSensorReading = parsePacket($thisPacket);

 if ($thisSensorReading > 0 && $thisSensorReading < 1023) {

 // if the sensor reading is valid, add it to the total:

 $readingsTotal = $readingsTotal + $thisSensorReading;

 // increment the total number of valid readings:

 $validReadings++;

 }

 }

 if ($validReadings > 0) {

 // round the packet average to 2 decimal points:

 $packetAverage = round($readingsTotal / $validReadings, 2);

 return $packetAverage;

 } else {

 return -1;

 }

}

function parsePacket($whichPacket) {

 $adcStart = 11; // ADC reading starts at 12th byte

 $numSamples = $whichPacket[8]; // number of samples in the packet

 $total = 0; // sum of ADC readings for averaging

 // if you got all the bytes, find the average ADC reading:

 if(count($whichPacket) == 22) {

 // read the address. It's a two-byte value, so you

 // add the two bytes as follows:

 $address = $whichPacket[5] + $whichPacket[4] * 256;

 // read $numSamples 10-bit analog values, two at a time

 // because each reading is two bytes long:

 for ($i = 0; $i < $numSamples * 2; $i=$i+2) {

 // 10-bit value = high byte * 256 + low byte:

 $thisSample = ($whichPacket[$i + $adcStart] * 256) +

 $whichPacket[($i + 1) + $adcStart];

 // add the result to the total for averaging later:

 $total = $total + $thisSample;

 }

 // average the result:

 $average = $total / $numSamples;

 return $average;

 } else {

 return -1;

 }

}

MTT_AppendixC.indd 399MTT_AppendixC.indd 399 9/6/07 1:10:42 PM9/6/07 1:10:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

400 MAKING THINGS TALK

function writeToFile($whichReading) {

 global $timeStamp, $messageString;

 // combine the reading and the timestamp:

 $logData = "$timeStamp $whichReading\n";

 $myFile = "datalog.txt"; // name of the file to write to:

 // check to see that the file exists and is writable:

 if (is_writable($myFile)) {

 // try to write to the file:

 if (!($fh = fopen($myFile, "a"))) {

 $messageString = "Couldn't open file $myFile";

 } else {

 // if you could open the file but not write to it, say so:

 if (!fwrite($fh, $logData)) {

 $messageString = "Couldn't write to $myFile";

 }

 }

 } else {

 //if it's not writeable:

 $messageString = "The file $myFile is not writable";

 }

}

?>

 <html>

 <head>

 </head>

 <body>

 <h2>

 <?=$messageString?>

 </h2>

 <hr>

 <form name="message" method="post" action="toxic_report.php">

 IP Address: <input type="text" name="ip" value="<?=$ip?>"

 size="15" maxlength="15">

 Port: <input type="text" name="port" value="<?=$port?>"

 size="5" maxlength="5">

 Number of readings to take: <input type="text"

 name="packetsToRead"

 value="<?=$packetsToRead?>" size="6">

 <input type="submit" value="Send It">

 </form>

 </body>

</html>

Lantronix UDP Tester
Language: Processing
Sends and receives UDP messages from Lantronix serial-
to-ethernet devices. Sends a serial message to a Lantronix
device connected to the serial port when you type “s”.
Sends a UDP message to the Lantronix device when you
type “u”. Listens for both UDP and serial messages and
prints them out.

// import UDP library

import hypermedia.net.*;

// import serial library:

import processing.serial.*;

UDP udp; // define the UDP object

int queryPort = 10002; // the port number for the device query

Serial myPort;

String xportIP = "192.168.1.20"; // fill in your Xport's IP here

int xportPort = 10001; // the Xport's receive port

String inString = ""; // incoming serial string

void setup() {

 // create a new connection to listen for

 // UDP datagrams on query port;

 udp = new UDP(this, queryPort);

 // listen for incoming packets:

 udp.listen(true);

 println(Serial.list());

 // make sure the serial port chosen here is the one attached

 // to your Xport:

 myPort = new Serial(this, Serial.list()[0], 9600);

}

//process events

void draw() {

 background(0,0,255); // a nice blue background.

}

/*

 send messages when s or u key is pressed:

 */

void keyPressed() {

 switch (key) {

 case 'u':

 udp.send("Hello UDP!\r\n", xportIP, xportPort);

 break;

 case 's':

 String messageString = "Hello Serial!";

 for (int c = 0; c < messageString.length(); c++) {

 myPort.write(messageString.charAt(c));

 }

 break;

 }

}

MTT_AppendixC.indd 400MTT_AppendixC.indd 400 9/6/07 1:11:34 PM9/6/07 1:11:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 401

/*

 listen for UDP responses

 */

void receive(byte[] data, String ip, int port) {

 String inString = new String(data); // incoming data as a string

 println("received "+inString +" from "+ip+" on port "+port);

 // print a couple of blank lines to separate messages

 // from multiple responders:

 print("\n\n");

}

/*

 listen for serial responses

 */

void serialEvent(Serial myPort) {

 // read any incoming bytes from the serial port and print them:

 char inChar = char(myPort.read());

 // if you get a linefeed, the string is ended; print it:

 if (inChar == '\n') {

 println("received " + inString + " in the serial port\r\n");

 // empty the string for the next message:

 inString = "";

 }

 else {

 inString += inChar; // add the latest byte to inString.

 }

}

XBee Packet Reader
and Graphing Program
Language: Processing
Reads a packet from an XBee radio via UDP and parses
it. Graphs the results over time. The packet should be 22
bytes long, made up of the following:
• byte 1: 0x7E, the start byte value
• byte 2-3: packet size, a 2-byte value (not used here)
• byte 4: API identifier value, a code that says what this

response is (not used here)
• byte 5-6: Sender's address
• byte 7: RSSI, Received Signal Strength Indicator

(not used here)
• byte 8: Broadcast options (not used here)
• byte 9: Number of samples to follow
• byte 10-11: Active channels indicator (not used here)
• byte 12-21: 5 10-bit values, each ADC samples from

the sender

import hypermedia.net.*;

import processing.serial.*;

UDP udp; // define the UDP object

int queryPort = 10002; // the port number for the device query

int hPos = 0; // horizontal position on the graph

int fontSize = 14; // size of the text font

void setup() {

 // set the window size:

 size(400,300);

 // create a font with the second font available to the system:

 PFont myFont = createFont(PFont.list()[1], fontSize);

 textFont(myFont);

 // create a new connection to listen for

 // UDP datagrams on query port:

 udp = new UDP(this, queryPort);

 // listen for incoming packets:

 udp.listen(true);

 // show the initial time and date:

 background(0);

 eraseTime(hPos, 0);

 drawTime(hPos, 0);

}

void draw() {

 // nothing happens here. It's all event-driven

 // by the receive() method.

}

/*

 listen for UDP responses

 */

void receive(byte[] data, String ip, int port) {

 int[] inString = int(data); // incoming data converted to string

 parseData(inString);

}

/*

 Once you've got a packet, you need to extract the useful data.

 This method gets the address of the sender and the 5 ADC readings.

 It then averages the ADC readings and gives you the result.

 */

void parseData(int[] thisPacket) {

 int adcStart = 11; // ADC reading starts at byte 12

 int numSamples = thisPacket[8]; // number of samples in packet

 int[] adcValues = new int[numSamples]; // array to hold

 // the 5 readings

 int total = 0; // sum of all the ADC readings

 int rssi = 0; // the received signal strength

 // read the address. It's a two-byte value, so you

 // add the two bytes as follows:

 int address = thisPacket[5] + thisPacket[4] * 256;

MTT_AppendixC.indd 401MTT_AppendixC.indd 401 9/6/07 1:11:54 PM9/6/07 1:11:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

402 MAKING THINGS TALK

 // read the received signal strength:

 rssi = thisPacket[6];

 // read <numSamples> 10-bit analog values, two at a time

 // because each reading is two bytes long:

 for (int i = 0; i < numSamples * 2; i=i+2) {

 // 10-bit value = high byte * 256 + low byte:

 int thisSample = (thisPacket[i + adcStart] * 256) +

 thisPacket[(i + 1) + adcStart];

 // put the result in one of 5 bytes:

 adcValues[i/2] = thisSample;

 // add the result to the total for averaging later:

 total = total + thisSample;

 }

 // average the result:

 int average = total / numSamples;

 // draw a line on the graph:

 drawGraph(average/4);

 eraseTime (hPos - 1, fontSize * 2);

 drawTime(hPos, fontSize * 2);

}

/*

 update the graph

 */

void drawGraph(int graphValue) {

 // draw the line:

 stroke(0,255,0);

 line(hPos, height, hPos, height - graphValue);

 // at the edge of the screen, go back to the beginning:

 if (hPos >= width) {

 hPos = 0;

 //wipe the screen:

 background(0);

 // wipe the old date and time, and draw the new:

 eraseTime(hPos, 0);

 drawTime(hPos, 0);

 }

 else {

 // increment the horizontal position to draw the next line:

 hPos++;

 }

}

/*

 Draw a black block over the previous date and time strings

 */

void eraseTime(int xPos, int yPos) {

 // use a rect to block out the previous time, rather than

 // redrawing the whole screen, which would mess up the graph:

 noStroke();

 fill(0);

 rect(xPos,yPos, 120, 80);

 // change the fill color for the text:

 fill(0,255,0);

}

/*

 print the date and the time

 */

void drawTime(int xPos, int yPos) {

 // set up an array to get the names of the months

 // from their numeric values:

 String[] months = {

 "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",

 "Sep", "Oct", "Nov", "Dec" };

 String date = ""; // string to hold the date

 String time = ""; // string to hold the time

 // format the date string:

 date += day();

 date += " ";

 date += months[month() -1];

 date += " ";

 date += year();

 // format the time string:

 time += hour();

 time += ":";

 if (minute() < 10) {

 time += "0";

 time += minute();

 }

 else {

 time +=minute();

 }

 time += ":";

 if (second() < 10) {

 time += "0";

 time += second();

 }

 else {

 time +=second();

 }

 // print both strings:

 text(date, xPos, yPos + fontSize);

 text(time, xPos, yPos + (2 * fontSize));

}

MTT_AppendixC.indd 402MTT_AppendixC.indd 402 9/6/07 1:12:30 PM9/6/07 1:12:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 403

Chapter 8

Sharp GP2D12 IR ranger reader
Language: Wiring/Arduino
Reads the value from a Sharp GP2D12 IR ranger and sends
it out serially.

int sensorPin = 0; // Analog input pin

int sensorValue = 0; // value read from the pot

void setup() {

 // initialize serial communications at 9600 bps:

 Serial.begin(9600);

}

void loop() {

 sensorValue = analogRead(sensorPin); // read the pot value

 // the sensor actually gives results that aren't linear.

 // this formula converts the results to a linear range.

 int range = (6787 / (sensorValue - 3)) - 4;

 Serial.println(range, DEC); // print the sensor value

 delay(10); // wait 10 milliseconds before the next loop

}

SRF02 sensor reader
Language: Wiring/Arduino
Reads data from a Devantech SRF02 ultrasonic sensor.
Should also work for the SRF08 and SRF10 sensors as well.
Sensor connections:
• SDA - Analog pin 4
• SCL - Analog pin 5

// include Wire library to read and write I2C commands:

#include <Wire.h>

// the commands needed for the SRF sensors:

#define sensorAddress 0x70

#define readInches 0x50

// use these as alternatives if you want centimeters or microseconds:

#define readCentimeters 0x51

#define readMicroseconds 0x52

// this is the memory register in the sensor that contains the result:

#define resultRegister 0x02

void setup()

{

 Wire.begin(); // start the I2C bus.

 // open the serial port:

 Serial.begin(9600);

}

void loop()

{

 // send the command to read the result in inches:

 sendCommand(sensorAddress, readInches);

 // wait at least 70 milliseconds for a result:

 delay(70);

 // set the register that you want to read the result from:

 setRegister(sensorAddress, resultRegister);

 // read the result:

 int sensorReading = readData(sensorAddress, 2);

 // print it:

 Serial.print("distance: ");

 Serial.print(sensorReading);

 Serial.println(" inches");

 // wait before next reading:

 delay(70);

}

/*

 SendCommand() sends commands in the format that the SRF sensors

expect

 */

void sendCommand (int address, int command) {

 // start I2C transmission:

 Wire.beginTransmission(address);

 // send command:

 Wire.send(0x00);

 Wire.send(command);

 // end I2C transmission:

 Wire.endTransmission();

}

/*

 setRegister() tells the SRF sensor to change the address

 pointer position

 */

void setRegister(int address, int thisRegister) {

 // start I2C transmission:

 Wire.beginTransmission(address);

 // send address to read from:

 Wire.send(thisRegister);

 // end I2C transmission:

 Wire.endTransmission();

}

/*

readData() returns a result from the SRF sensor

 */

int readData(int address, int numBytes) {

 int result = 0; // the result is two bytes long

 // send I2C request for data:

 Wire.requestFrom(address, numBytes);

MTT_AppendixC.indd 403MTT_AppendixC.indd 403 9/6/07 1:12:51 PM9/6/07 1:12:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

404 MAKING THINGS TALK

 // wait for two bytes to return:

 while (Wire.available() < 2) {

 // wait for result

 }

 // read the two bytes, and combine them into one int:

 result = Wire.receive() * 256;

 result = result + Wire.receive();

 // return the result:

 return result;

}

XBee Signal Strength Reader
Language: Processing
Reads a packet from an XBee radio and parses it. The
packet should be 22 bytes long. It should be made up of
the following:
• byte 1: 0x7E, the start byte value
• byte 2-3: packet size, a 2-byte value (not used here)
• byte 4: API identifier value, a code that says what this

response is (not used here)
• byte 5-6: Sender's address
• byte 7: RSSI, Received Signal Strength Indicator

(not used here)
• byte 8: Broadcast options (not used here)
• byte 9: Number of samples to follow
• byte 10-11: Active channels indicator (not used here)
• byte 12-21: 5 10-bit values, each ADC samples from

the sender

import processing.serial.*;

Serial XBee ; // input serial port from the XBee

Radio

int[] packet = new int[22]; // with 5 samples, the XBee packet is

 // 22 bytes long

int byteCounter; // keeps track of where you are in

 // the packet

int rssi = 0; // received signal strength

int address = 0; // the sending XBee 's address

Serial myPort; // The serial port

int fontSize = 18; // size of the text on the screen

int lastReading = 0; // value of the previous incoming byte

void setup () {

 size(400, 300); // window size

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], fontSize);

 textFont(myFont);

 // get a list of the serial ports:

 println(Serial.list());

 // open the serial port attached to your XBee radio:

 XBee = new Serial(this, Serial.list()[0], 9600);

}

void draw() {

 // if you have new data and it's valid (>0), graph it:

 if ((rssi > 0) && (rssi != lastReading)) {

 // set the background:

 background(0);

 // set the bar height and width:

 int rectHeight = rssi;

 int rectWidth = 50;

 // draw the rect:

 stroke(23, 127, 255);

 fill (23, 127, 255);

 rect(width/2 - rectWidth, height-rectHeight, rectWidth, height);

 // write the number:

 text("XBee Radio Signal Strength test", 10, 20);

 text("From: " + hex(address), 10, 40);

 text ("RSSI: -" + rssi + " dBm", 10, 60);

 // save the current byte for next read:

 lastReading = rssi;

 }

}

void serialEvent(Serial XBee) {

 // read a byte from the port:

 int thisByte = XBee .read();

 // if the byte = 0x7E, the value of a start byte, you have

 // a new packet:

 if (thisByte == 0x7E) { // start byte

 // parse the previous packet if there's data:

 if (packet[2] > 0) {

 parseData(packet);

 }

 // reset the byte counter:

 byteCounter = 0;

 }

 // put the current byte into the packet at the current position:

 packet[byteCounter] = thisByte;

 // increment the byte counter:

 byteCounter++;

}

/*

 Once you've got a packet, you need to extract the useful data.

 This method gets the address of the sender and RSSI.

 */

void parseData(int[] thisPacket) {

 // read the address. It's a two-byte value, so you

 // add the two bytes as follows:

 address = thisPacket[5] + thisPacket[4] * 256;

 // get RSSI:

 rssi = thisPacket[6];

}

MTT_AppendixC.indd 404MTT_AppendixC.indd 404 9/6/07 1:13:13 PM9/6/07 1:13:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 405

GPS parser
Language: Processing
This program takes in NMEA 0183 serial data and parses
out the date, time, latitude, and longitude using the
GPRMC sentence.

// import the serial library:

import processing.serial.*;

Serial myPort; // The serial port

float latitude = 0.0; // the latitude reading in degrees

String northSouth; // north or south?

float longitude = 0.0; // the longitude reading in degrees

String eastWest; // east or west?

float heading = 0.0; // the heading in degrees

int hrs, mins, secs; // time units

int thisDay, thisMonth, thisYear;

void setup() {

 size(300, 300); // window size

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 14);

 textFont(myFont);

 // settings for drawing arrow:

 noStroke();

 smooth();

 // List all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my mac

 // is always my Keyspan adaptor, so I open Serial.list()[0].

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[0], 4800);

 // read bytes into a buffer until you get a carriage

 // return (ASCII 13):

 myPort.bufferUntil('\r');

}

void draw() {

 background(0);

 // make the text white:

 fill(255);

 // print the date and time from the GPS sentence:

 text(thisMonth+ "/"+ thisDay+ "/"+ thisYear , 50, 30);

 text(hrs+ ":"+ mins+ ":"+ secs + " GMT ", 50, 50);

 // print the position from the GPS sentence:

 text(latitude + " " + northSouth + ", " +longitude +" "+ eastWest,

 50, 70);

 text("heading " + heading + " degrees", 50,90);

 // draw an arrow using the heading:

 drawArrow(heading);

}

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // if you got any bytes other than the linefeed, parse it:

 if (myString != null) {

 parseString(myString);

 }

}

void parseString (String serialString) {

 // split the string at the commas:

 String items[] = (split(serialString, ','));

 // if the first item in the sentence is the

 // identifier, parse the rest

 if (items[0].equals("$GPRMC")) {

 // get time, date, position, course, and speed

 getRMC(items);

 }

}

void getRMC(String[] data) {

 // move the items from the string into the variables:

 int time = int(data[1]);

 // first two digits of the time are hours:

 hrs = time/10000;

 // second two digits of the time are minutes:

 mins = (time%10000)/100;

 // last two digits of the time are seconds:

 secs = (time%100);

 // if you have a valid reading, parse the rest of it:

 if (data[2].equals("A")) {

 latitude = float(data[3])/100.0;

 northSouth = data[4];

 longitude = float(data[5])/100.0;

 eastWest = data[6];

 heading = float(data[8]);

 int date = int(data[9]);

 // last two digits of the date are year. Add the century too:

 thisYear = date%100 + 2000;

 // second two digits of the date are month:

 thisMonth = (date%10000)/100;

 // first two digits of the date are day:

 thisDay = date/10000;

 }

}

MTT_AppendixC.indd 405MTT_AppendixC.indd 405 9/6/07 1:13:32 PM9/6/07 1:13:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

406 MAKING THINGS TALK

void drawArrow(float angle) {

 // move whatever you draw next so that (0,0) is centered

 // on the screen:

 translate(width/2, height/2);

 // draw a circle in light blue:

 fill(80,200,230);

 ellipse(0,0,50,50);

 // make the arrow black:

 fill(0);

 // rotate using the heading:

 rotate(radians(angle));

 // draw the arrow. center of the arrow is at (0,0):

 triangle(-10, 0, 0, -20, 10, 0);

 rect(-2,0, 4,20);

}

CMPS03 compass reader
Language: Wiring/Arduino
Reads data from a Devantech CMPS03 compass sensor.
Sensor connections:
• SDA - Analog pin 4
• SCL - Analog pin 5

// include Wire library to read and write I2C commands:

#include <Wire.h>

// the commands needed for the SRF sensors:

#define sensorAddress 0x60

// this is the memory register in the sensor that contains the result:

#define resultRegister 0x02

void setup() {

 // start the I2C bus

 Wire.begin();

 // open the serial port:

 Serial.begin(9600);

}

void loop() {

 // send the command to read the result in inches:

 setRegister(sensorAddress, resultRegister);

 // read the result:

 int bearing = readData(sensorAddress, 2);

 // print it:

 Serial.print("bearing: ");

 Serial.print(bearing/10);

 Serial.println(" degrees");

 // wait before next reading:

 delay(70);

}

/*

 setRegister() tells the SRF sensor to change the address

 pointer position

 */

void setRegister(int address, int thisRegister) {

 // start I2C transmission:

 Wire.beginTransmission(address);

 // send address to read from:

 Wire.send(thisRegister);

 // end I2C transmission:

 Wire.endTransmission();

}

/*

 readData() returns a result from the SRF sensor

 */

int readData(int address, int numBytes) {

 int result = 0; // the result is two bytes long

 // send I2C request for data:

 Wire.requestFrom(address, numBytes);

 // wait for two bytes to return:

 while (Wire.available() < 2) {

 // wait for result

 }

 // read the two bytes, and combine them into one int:

 result = Wire.receive() * 256;

 result = result + Wire.receive();

 // return the result:

 return result;

}

Accelerometer reader
Language: Wiring/Arduino
Reads 2 axes of an accelerometer and sends the values out
the serial port

int accelerometer[2]; // variable to hold the accelerometer values

void setup() {

 // open serial port:

 Serial.begin(9600);

 // send out some initial data:

 Serial.println("0,0,");

}

void loop() {

 // read 2 channels of the accelerometer:

 for (int i = 0; i < 2; i++) {

 accelerometer[i] = analogRead(i);

 // delay to allow analog-to-digital converter to settle:

 delay(10);

 }

MTT_AppendixC.indd 406MTT_AppendixC.indd 406 9/6/07 1:14:01 PM9/6/07 1:14:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 407

 // if there's serial data in, print sensor values out:

 if (Serial.available() > 0) {

 // read incoming data to clear serial input buffer:

 int inByte = Serial.read();

 for (int i = 0; i < 2; i++) {

 // values as ASCII strings:

 Serial.print(accelerometer[i], DEC);

 // print commas in between values:

 Serial.print(",");

 }

 // print \r and \n after values are sent:

 Serial.println();

 }

}

Accelerometer Tilt
Language: Processing
Takes the values in serially from an accelerometer attached
to a microcontroller and uses them to set the attitude of a
disk on the screen.

import processing.serial.*; // import the serial lib

int graphPosition = 0; // horizontal position of the graph

int[] vals = new int[2]; // raw values from the sensor

int[] maximum = new int[2]; // maximum value sensed

int[] minimum = new int[2]; // minimum value sensed

int[] range = new int[2]; // total range sensed

float[] attitude = new float[2]; // the tilt values

float position; // position to translate to

Serial myPort; // the serial port

boolean madeContact = false; // whether there's been serial data in

void setup () {

 // draw the window:

 size(400, 400, P3D);

 // set the background color:

 background(0);

 // set the maximum and minimum values:

 for (int i = 0; i < 2; i++) {

 maximum[i] = 600;

 minimum[i] = 200;

 // calculate the total current range:

 range[i] = maximum[i] - minimum[i];

 }

 position = width/2; // calculate position.

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 18);

 textFont(myFont);

 // List all the available serial ports

 println(Serial.list());

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // only generate a serial event when you get a return char:

 myPort.bufferUntil('\r');

 // set the fill color:

 fill(90,250,250);

}

void draw () {

 // clear the screen:

 background(0);

 // print the values:

 text(vals[0] + " " + vals[1], -30, 10);

 // if you've never gotten a string from the microcontroller,

 // keep sending carriage returns to prompt for one:

 if (madeContact == false) {

 myPort.write('\r');

 }

 // set the attitude:

 setAttitude();

 // draw the plane:

 tilt();

}

void setAttitude() {

 for (int i = 0; i < 2; i++) {

 // calculate the current attitude as a percentage of 2*PI,

 // based on the current range:

 attitude[i] = (2*PI) * float(vals[i] -

 minimum[i]) /float(range[i]);

 }

}

void tilt() {

 // translate from origin to center:

 translate(position, position, position);

 // X is front-to-back:

 rotateX(-attitude[1]);

 // Y is left-to-right:

 rotateY(-attitude[0] - PI/2);

 // set the fill color:

 fill(90,250,250);

 // draw the rect:

 ellipse(0, 0, width/4, width/4);

 // change the fill color:

 fill(0);

 // Draw some text so you can tell front from back:

 // print the values:

 text(vals[0] + " " + vals[1], -30, 10,1);

}

MTT_AppendixC.indd 407MTT_AppendixC.indd 407 9/6/07 1:14:24 PM9/6/07 1:14:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

408 MAKING THINGS TALK

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // if serialEvent occurs at all, contact with the microcontroller

 // has been made:

 madeContact = true;

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas

 //and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // if you received all the sensor strings, use them:

 if (sensors.length >= 2) {

 vals[0] = sensors[0];

 vals[1] = sensors[1];

 // send out the serial port to ask for data:

 myPort.write('\r');

 }

 }

}

Chapter 9

Color Recognition Using a Webcam
Language: Processing
Reads an image from a camera and looks for a blob of a
particular color. Click on a color in the image to choose the
color to track.

import processing.serial.*; // import the serial lib

int graphPosition = 0; // horizontal position of the graph

int[] vals = new int[2]; // raw values from the sensor

int[] maximum = new int[2]; // maximum value sensed

int[] minimum = new int[2]; // minimum value sensed

int[] range = new int[2]; // total range sensed

float[] attitude = new float[2]; // the tilt values

float position; // position to translate to

Serial myPort; // the serial port

boolean madeContact = false; // whether there's been serial data in

void setup () {

 // draw the window:

 size(400, 400, P3D);

 // set the background color:

 background(0);

 // set the maximum and minimum values:

 for (int i = 0; i < 2; i++) {

 maximum[i] = 600;

 minimum[i] = 200;

 // calculate the total current range:

 range[i] = maximum[i] - minimum[i];

 }

 // calculate position:

 position = width/2;

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 18);

 textFont(myFont);

 // List all the available serial ports

 println(Serial.list());

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // only generate a serial event when you get a return char:

 myPort.bufferUntil('\r');

 fill(90,250,250); // set the fill color.

}

void draw () {

 // clear the screen:

 background(0);

MTT_AppendixC.indd 408MTT_AppendixC.indd 408 9/6/07 1:14:46 PM9/6/07 1:14:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 409

 // print the values:

 text(vals[0] + " " + vals[1], -30, 10);

 // if you've never gotten a string from the microcontroller,

 // keep sending carriage returns to prompt for one:

 if (madeContact == false) {

 myPort.write('\r');

 }

 // set the attitude:

 setAttitude();

 // draw the plane:

 tilt();

}

void setAttitude() {

 for (int i = 0; i < 2; i++) {

 // calculate the current attitude as a percentage of 2*PI,

 // based on the current range:

 attitude[i] = (2*PI) * float(vals[i] -

 minimum[i]) /float(range[i]);

 }

}

void tilt() {

 // translate from origin to center:

 translate(position, position, position);

 // X is front-to-back:

 rotateX(-attitude[1]);

 // Y is left-to-right:

 rotateY(-attitude[0] - PI/2);

 // set the fill color:

 fill(90,250,250);

 // draw the rect:

 ellipse(0, 0, width/4, width/4);

 // change the fill color:

 fill(0);

 // Draw some text so you can tell front from back:

 // print the values:

 text(vals[0] + " " + vals[1], -30, 10,1);

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // if serialEvent occurs at all, contact with the microcontroller

 // has been made:

 madeContact = true;

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // if you got any bytes other than the linefeed:

 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas

 //and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // if you received all the sensor strings, use them:

 if (sensors.length >= 2) {

 vals[0] = sensors[0];

 vals[1] = sensors[1];

 // send out the serial port to ask for data:

 myPort.write('\r');

 }

 }

}

QRcode 2D Barcode Reader
Language: Processing
Uses the qrcode library from www.shiffman.net/p5/
pqrcode based on a Java library from qrcode.sourceforge.
jp. To use this, generate images from a QRcode generator
such as qrcode.kaywa.com and put them in this sketch’s
data folder. Press spacebar to read from the camera,
generate an image, and scan for barcodes. Press f to read
from a file and scan. Press s for camera settings.
— by Tom Igoe / Daniel Shiffman

import processing.video.*;

import pqrcode.*;

Capture video; // Video capture object

String statusMsg = "Waiting for an image"; // a string for messages:

// Decoder object from pqrdecoder library

Decoder decoder;

// make sure to generate your own image here:

String testImageName = "qrcode.png";

void setup() {

 size(400, 320);

 video = new Capture(this, width, height-20, 30);

 // Create a decoder object

 decoder = new Decoder(this);

 // Create a font with a font available to the system:

 PFont myFont = createFont(PFont.list()[2], 14);

 textFont(myFont);

}

MTT_AppendixC.indd 409MTT_AppendixC.indd 409 9/6/07 1:15:12 PM9/6/07 1:15:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

410 MAKING THINGS TALK

void draw() {

 background(0);

 // Display video

 image(video, 0, 0);

 // Display status

 text(statusMsg, 10, height-4);

 // If we are currently decoding

 if (decoder.decoding()) {

 // Display the image being decoded

 PImage show = decoder.getImage();

 image(show,0,0,show.width/4,show.height/4);

 statusMsg = "Decoding image";

 // fancy code for drawing dots as a progress bar:

 for (int i = 0; i < (frameCount/2) % 10; i++)

 {

 statusMsg += ".";

 }

 }

}

void captureEvent(Capture video) {

 video.read();

}

void keyReleased() {

 String code = "";

 // Depending on which key is hit, do different things:

 switch (key) {

 case ' ': // Spacebar takes a picture and tests it:

 // copy it to the PImage savedFrame:

 PImage savedFrame = createImage(video.width,video.height,RGB);

 savedFrame.copy(video, 0,0,video.width,video.height,0,0,

 video.width,video.height);

 savedFrame.updatePixels();

 // Decode savedFrame

 decoder.decodeImage(savedFrame);

 break;

 case 'f': // f runs a test on a file

 PImage preservedFrame = loadImage(testImageName);

 // Decode file

 decoder.decodeImage(preservedFrame);

 break;

 case 's': // s opens the settings for this capture device:

 video.settings();

 break;

 }

}

// When the decoder object finishes

// this method will be invoked.

void decoderEvent(Decoder decoder) {

 statusMsg = decoder.getDecodedString();

}

Parallax RFID Reader
Language: Processing
Reads data serially from a Parallax RFID reader.

// import the serial library:

import processing.serial.*;

Serial myPort; // the serial port you're using

String tagID = ""; // the string for the tag ID

void setup() {

 size(600,200);

 // list all the serial ports:

 println(Serial.list());

 // based on the list of serial ports printed from the

 // previous command, change the 0 to your port's number:

 String portnum = Serial.list()[0];

 // initialize the serial port:

 myPort = new Serial(this, portnum, 2400);

 // incoming string from reader will have 12 bytes:

 myPort.buffer(12);

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 24);

 textFont(myFont);

}

void draw() {

 // clear the screen:

 background(0);

 // print the string to the screen:

 text(tagID, width/4, height/2 - 24);

}

/*

 this method reads bytes from the serial port

 and puts them into the tag string.

 It trims off the \r and \n

 */

void serialEvent(Serial myPort) {

 tagID = trim(myPort.readString());

}

ID Innovations RFID Reader
Language: Processing
Reads data serially from an ID Innovations ID12 RFID reader.

// import the serial library:

import processing.serial.*;

Serial myPort; // the serial port you're using

MTT_AppendixC.indd 410MTT_AppendixC.indd 410 9/6/07 1:15:33 PM9/6/07 1:15:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 411

String tagID = ""; // the string for the tag ID

void setup() {

 size(600,200);

 // list all the serial ports:

 println(Serial.list());

 // based on the list of serial ports printed from the

 // previous command, change the 0 to your port's number:

 String portnum = Serial.list()[0];

 // initialize the serial port:

 myPort = new Serial(this, portnum, 9600);

 // incoming string from reader will have 16 bytes:

 myPort.buffer(16);

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 24);

 textFont(myFont);

}

void draw() {

 // clear the screen:

 background(0);

 // print the string to the screen:

 text(tagID, width/4, height/2 - 24);

}

/*

 this method reads bytes from the serial port

 and puts them into the tag string

 */

void serialEvent(Serial myPort) {

 // get the serial input buffer in a string:

 String inputString = myPort.readString();

 // filter out the tag ID from the string:

 tagID = parseString(inputString);

}

/*

 This method reads a string and looks for the 10-byte

 tag ID. It assumes it should get a STX byte (0x02)

 at the beginning and an ETX byte (0x03) at the end

 */

String parseString(String thisString) {

 String tagString = ""; // string to put the tag ID into

 // first character of the input:

 char firstChar = thisString.charAt(0);

 // last character of the input:

 char lastChar = thisString.charAt(thisString.length() -1);

 // if the first char is STX (0x02) and the last char

 // is ETX (0x03), then put the next ten bytes

 // into the tag string:

 if ((firstChar == 0x02) && (lastChar == 0x03)) {

 tagString = thisString.substring(1, 11);

 }

 return tagString;

}

ASPX RW-210 RFID Reader
Language: Processing
Reads data serially from an ASPX RW-210 RFID RFID reader.

// import the serial library:

import processing.serial.*;

Serial myPort; // the serial port you're using

String tagID = ""; // the string for the tag ID

void setup() {

 size(600,200);

 // list all the serial ports:

 println(Serial.list());

 // based on the list of serial ports printed from the

 //previous command, change the 0 to your port's number:

 String portnum = Serial.list()[0];

 // initialize the serial port:

 myPort = new Serial(this, portnum, 19200);

 // incoming string from reader will have 12 bytes:

 myPort.buffer(12);

 // create a font with the third font available to the system:

 PFont myFont = createFont(PFont.list()[2], 24);

 textFont(myFont);

 // send the continual read command:

 myPort.write(0xFB);

}

void draw() {

 // clear the screen:

 background(0);

 // print the string to the screen:

 text(tagID, width/8, height/2 - 24);

}

/*

 this method reads bytes from the serial port

 and puts them into the tag string

 */

 void serialEvent(Serial myPort) {

 int thisByte = 0;

 tagID = "";

 while(myPort.available() > 0) {

 int newByte = myPort.read();

MTT_AppendixC.indd 411MTT_AppendixC.indd 411 9/6/07 1:15:56 PM9/6/07 1:15:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

412 MAKING THINGS TALK

 tagID += hex(newByte, 2);

 tagID += " ";

 }

}

Microcontroller RFID Reader
Language: Wiring/Arduino
Reads data serially from a Parallax or ID Innovations ID12
RFID reader.

#define tagLength 10 // each tag ID contains 10 bytes

#define startByte 0x0A // for the ID Innovations reader, use 0x02

#define endByte 0x0D // for the ID Innovations reader, use 0x03

#define dataRate 2400 // for the ID Innovations reader, use 9600

char tagID[tagLength]; // array to hold the tag you read

int tagIndex = 0; // counter for number of bytes read

int tagComplete = false; // whether the whole tag's been read

void setup() {

 // begin serial:

 Serial.begin(dataRate);

}

void loop() {

 // read in and parse serial data:

 if (Serial.available() > 0) {

 readByte();

 }

 if(tagComplete == true) {

 Serial.println(tagID);

 }

}

/*

 This method reads the bytes, and puts the

 appropriate ones in the tagID

 */

void readByte() {

 char thisChar = Serial.read();

Serial.print(thisChar, HEX);

 switch (thisChar) {

 case startByte: // start character

 // reset the tag index counter

 tagIndex = 0;

 break;

 case endByte: // end character

 tagComplete = true; // you have the whole tag

 break;

 default: // any other character

 tagComplete = false; // there are still more bytes to read

 // add the byte to the tagID

 if (tagIndex < tagLength) {

 tagID[tagIndex] = thisChar;

 // increment the tag byte counter

 tagIndex++;

 }

 break;

 }

}

X10 test
Language: Arduino
Sends out basic X10 messages from an Arduino module
using a PL513 ot TW523 X10 module.

// include the X10 library files:

#include <x10.h>

#include <x10constants.h>

#define zcPin 9 // the zero crossing detect pin

#define dataPin 8 // the X10 data out pin

#define repeatTimes 1 // how many times to repeat each X10 message

 // in an electrically noisy environment, you

 // can set this higher.

// set up a new x10 library instance:

x10 myHouse = x10(zcPin, dataPin);

void setup() {

 // Turn off all lights:

 myHouse.write(A, ALL_UNITS_OFF,repeatTimes);

}

void loop() {

 // Turn on first module:

 myHouse.write(A, UNIT_1,repeatTimes);

 myHouse.write(A, ON,repeatTimes);

 myHouse.write(A, UNIT_2,repeatTimes);

 myHouse.write(A, OFF,repeatTimes);

 delay(500);

 // turn on second module:

 myHouse.write(A, UNIT_1,repeatTimes);

 myHouse.write(A, OFF,repeatTimes);

 myHouse.write(A, UNIT_2,repeatTimes);

 myHouse.write(A, ON,repeatTimes);

 delay(500);

}

MTT_AppendixC.indd 412MTT_AppendixC.indd 412 9/6/07 1:16:20 PM9/6/07 1:16:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 413

RFID–to-X10 translator
 Language: Arduino
Reads RFID tags and sends X10 messages in response to
the tags.

// include the X10 library files:

#include <x10.h>

#include <x10constants.h>

#define zcPin 9 // the zero crossing detect pin

#define dataPin 8 // the X10 data out pin

#define repeatTimes 1 // how many times to repeat each X10 message

 // in an electrically noisy environment, you

 // can set this higher.

#define tagLength 10 // each tag ID contains 10 bytes

#define startByte 0x0A // for the ID Innovations reader, use 0x02

#define endByte 0x0D // for the ID Innovations reader, use 0x03

#define dataRate 2400 // for the ID Innovations reader, use 9600

// set up a new x10 library instance:

x10 myHouse = x10(zcPin, dataPin);

char tagID[tagLength]; // array to hold the tag you read

int tagIndex = 0; // counter for number of bytes read

int tagComplete = false; // whether the whole tag's been read

char tagOne[] = "0415AB6FB7"; // put the values for your tags here

char tagTwo[] = "0415AB5DAF";

char lastTag = 0; // value of the last tag read

void setup() {

 Serial.begin(dataRate); // begin serial.

 // Turn off all lights:

 myHouse.write(A, ALL_LIGHTS_OFF,repeatTimes);

}

void loop() {

 // read in and parse serial data:

 if (Serial.available() > 0) {

 readByte();

 }

 // if you've got a complete tag, compare your tag

 // to the existing values:

 if (tagComplete == true) {

 if (compareTags(tagID, tagOne) == true) {

 if (lastTag != 1) {

 // if the last tag wasn't this one,

 // send commands:

 myHouse.write(A, UNIT_1,repeatTimes);

 myHouse.write(A, ON,repeatTimes);

 myHouse.write(A, UNIT_2,repeatTimes);

 myHouse.write(A, OFF,repeatTimes);

 // note that this was the last tag read:

 lastTag = 1;

 }

 }

 if (compareTags(tagID, tagTwo) == true) {

 if (lastTag != 2) {

 // if the last tag wasn't this one,

 // send commands:

 myHouse.write(A, UNIT_1,repeatTimes);

 myHouse.write(A, OFF,repeatTimes);

 myHouse.write(A, UNIT_2,repeatTimes);

 myHouse.write(A, ON,repeatTimes);

 // note that this was the last tag read:

 lastTag = 2;

 }

 }

 }

}

/*

 This method compares two char arrays byte by byte:

 */

char compareTags(char* thisTag, char* thatTag) {

 char match = true; // whether they're the same

 for (int i = 0; i < tagLength; i++) {

 // if any two bytes don't match, the whole thing fails:

 if (thisTag[i] != thatTag[i]) {

 match = false;

 }

 }

 return match;

}

/*

 This method reads the bytes, and puts the

 appropriate ones in the tagID

 */

void readByte() {

 char thisChar = Serial.read();

 switch (thisChar) {

 case startByte: // start character

 // reset the tag index counter

 tagIndex = 0;

 break;

 case endByte: // end character

 tagComplete = true; // you have the whole tag

 break;

 default: // any other character

 tagComplete = false; // there are still more bytes to read

 // add the byte to the tagID

 if (tagIndex < tagLength) {

 tagID[tagIndex] = thisChar;

 // increment the tag byte counter

 tagIndex++;

 }

 break;

 }

}

MTT_AppendixC.indd 413MTT_AppendixC.indd 413 9/6/07 1:16:41 PM9/6/07 1:16:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

414 MAKING THINGS TALK

HTTP Environment Variable Printer
Language: PHP
Prints out the HTTP environment variables.

<?php

foreach ($_REQUEST as $key => $value)

 {

 echo "$key: $value
\n";

 }

 foreach ($_SERVER as $key => $value)

 {

 echo "$key: $value
\n";

 }

?>

IP geocoder
 Language: PHP
 Uses a client’s IP address to get a latitude and longitude.
Uses the client’s user agent to format the response.

<?php

// initialize variables:

 $lat = 0;

 $long = 0;

 $ipAddress = "0.0.0.0";

 $country = "unknown";

 // Check to see what type of client this is:

 $userAgent = getenv('HTTP_USER_AGENT');

 // Get the client's IP address:

 $ipAddress = getenv('REMOTE_ADDR');

 // use http://www.hostIP.info to get the latitude and longitude

 // from the IP address. First, format the HTTP request string:

 $IpLocatorUrl =

 "http://api.hostip.info/get_html.php?&position=true&ip=";

 $IpLocatorUrl = $IpLocatorUrl.$ipAddress;

 // make the HTTP request:

 $filePath = fopen ($IpLocatorUrl, "r");

 // as long as you haven't reached the end of the incoming text:

 while (!feof($filePath)) {

 // read one line at a time, strip all HTML tags from the line:

 $line = fgetss($filePath, 4096);

 // break each line into fragments at the colon:

 $fragments = explode(":", $line);

 switch ($fragments[0]) {

 // if the first fragment is "country", the second

 // is the country name:

 case "Country":

 // trim any whitespace:

 $country = trim($fragments[1]);

 break;

 // if the first fragment is "Latitude", the second

 // is the latitude:

 case "Latitude":

 // trim any whitespace:

 $lat = trim($fragments[1]);

 break;

 // if the first fragment is "Longitude", the second

 //is the longitude:

 case "Longitude":

 // trim any whitespace:

 $long = trim($fragments[1]);

 break;

 }

 }

 // close the connection:

 fclose($filePath);

 // decide on the output based on the client type:

 switch ($userAgent) {

 case "lantronix":

 // Lantronix device wants a nice short answer:

 echo "<$lat,$long,$country>\n";

 break;

 case "processing":

 // Processing does well with lines:

 echo "Latitude:$lat\nLongitude:$long\nCountry:$country\n\

n";

 break;

 default:

 // other clients can take a long answer:

 echo <<<END

<html>

<head></head>

<body>

 <h2>Where You Are:</h2>

 Your country: $country

 Your IP: $ipAddress

 Latitude: $lat

 Longitude: $long

</body>

</html>

END;

 }

?>

MTT_AppendixC.indd 414MTT_AppendixC.indd 414 9/6/07 1:17:05 PM9/6/07 1:17:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 415

Mail Reader
Language: PHP
Reads email in PHP. Requires the pwds.php file listed below.

<?php

include('POP3.php');

// keep your personal info in a separate file:

@include_once("pwds.php");

// New instance of the Net_POP3 class:

$pop3 =& new Net_POP3();

// Connect to the mail server:

$pop3->connect($host , $port);

// Send login info:

$pop3->login($user , $pass , 'APOP');

// Get a count of the number of new messages waiting:

$numMsgs = $pop3->numMsg();

echo "<pre>\n";

echo "Checking mail...\n";

echo "Number of messages: $numMsgs\n";

// Get the headers of the first message:

echo($pop3->getRawHeaders(1));

echo "\n\n\n";

echo "</pre>\n";

// disconnect:

$pop3->disconnect();

?>

pwds.php. This will contain your username and password
info. You want to keep it separate from the main PHP file
so you can protect it.

<?php

$user='username'; // your mail login

$pass='password'; // exactly as you normally type it

$host='pop.example.com'; // usually pop.yourmailserver.com

$port="110"; // this won't work on gmail.com and

 // other servers using SSL

?>

RFID mail reader
Language: PHP
Parses a POP email box for a specific message from an
Xport. The message looks like this:
 From: myAccountName@myMailhost.com
 Subject: Notification: Tag one
 Date: June 21, 2007 6:11:59 PM EDT
 To: myAccountName@myMailhost.com

<?php

include('POP3.php');

// keep your personal info in a separate file:

@include_once("pwds.php");

echo "Checking mail...";

// New instance of the Net_POP3 class:

$pop3 =& new Net_POP3();

// Connect to the mail server:

$pop3->connect($host , $port);

// Send login info:

$pop3->login($user , $pass , 'APOP');

// Get a count of the number of new messages waiting:

$numMsgs = $pop3->numMsg();

echo "<pre>\n";

echo "Number of messages: $numMsgs\n";

// iterate over the messages:

for ($thisMsg = 1; $thisMsg <= $numMsgs; $thisMsg++) {

 // parse the headers for each message into

 // an array called $header:

 $header = $pop3->getParsedHeaders($thisMsg);

 // print the subject header:

 $subject = $header["Subject"];

 // look for the word "Notification" before a colon

 // in the subject:

 $words = explode(":", $subject);

 // only do the rest if this mail message is a notification:

 if ($words[0] == "Notification"){

 // get the second half of the subject; that's the tag ID:

 $idTag = $words[1];

 // print it;

 echo "$idTag showed up at address\t";

MTT_AppendixC.indd 415MTT_AppendixC.indd 415 9/6/07 1:17:25 PM9/6/07 1:17:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

 /*

 the IP address is buried in the "Received" header.

 That header is an array. The second element contains

 who it's from. In that string, the IP is the first

 thing contained in square brackets. So:

 */

 // get the stuff in the right array element after the

 // opening square bracket:

 $receivedString = explode("[", $header["Received"][1]);

 // throw away the stuff after the closing bracket:

 $recdString2 = explode("]", $receivedString[1]);

 // what's left is the IP address:

 $ipAddress = $recdString2[0];

 // print the IP address:

 echo "$ipAddress at \t";

 // print the date header:

 $date = $header["Date"];

 echo "$date\t";

 echo "\n";

 }

}

echo "That's all folks";

echo "</pre>";

// disconnect:

$pop3->disconnect();

?>

416 MAKING THINGS TALK

MTT_AppendixC.indd 416MTT_AppendixC.indd 416 9/6/07 1:17:46 PM9/6/07 1:17:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C 417

MTT_AppendixC.indd 417MTT_AppendixC.indd 417 9/6/07 1:18:11 PM9/6/07 1:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

418 MAKING THINGS TALK

MTT_Index.indd 418MTT_Index.indd 418 9/6/07 1:21:11 PM9/6/07 1:21:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 419

35 Ways to Find Your Location, 264
802.15.4
 duplex radio transmission project,

 193–206
 toxic chemical sensor project, 238
 XBee, querying for, 225–226

A
absolute path, 28
accelerometer, 152, 157, 288–292
access, files, 29
acquisition, location, 263–264
active
 distance ranging, 272–276
 RFID tags, 305–307
Address 2007, 260–261
 addresses
 Bluetooth, 74
 hardware, 84–86
 hosts, network modules, 125
 IP, 84–86
 Lantronix, UDP query, 223–225
 localhost, 87
 loopback, 87
 network, 84–86
 XBee, 802.15.4 query, 225–226
air quality meter project
 circuit, 127–128
 overview, 126–127
 programming, scraping, 130–131
 programming, meter control, 129
 programming, microcontroller,

 132–138
 web page scraping, 129–131
alligator clip test leads, 22–23
analog
 input circuit, 42–46
 radio transmission, 184
 sensors (variable resistors), 22–23
Andraos, Mouna, 260–261
antennas, 184
Apache, 30
appliance control module, X10, 318
application layer
 defined, 50
 Monski Pong project, 56–70
 RS-232 serial protocol, 53–54
 TTL serial protocol, 52
 USB protocol, 52–53
APSX RW-210 RFID reader, 313–315

Arduino
 analog input circuit, 42–46
 basic circuits, 42–46
 blink example program, 40
 Bluetooth, new, 358
 digital input circuit, 42–46
 forums, 40
 installation, 37–39
 overview, 34–44
 serial example program, 41–42
 shields, 36
 types, 34–36
 updates, 37
 voltage divider circuit, 42–45
 wiring components, 42–44
 Wiring, compared with, 36
 XBee shield, 196–197
Arnall, Timo, 294–295
ArrayList, 166
ASCII
 defined, 60
 Monski Pong sensors, 60–61
Asterisk, 356
asynchronous serial communication,

 50–51, 68–70
attitude, accelerometer project,

 288–292
AVRs, 357

B
bar code recognition
 overview, 301–302
 project, 303–307
Barcia-Colombo, Gabriel, 78–79
Basic
 Processing, 26
 Stamp, 41, 356
Beim, Alex, 176–177
Bishop, Durrell, 301
Bluetooth
 address, 74
 Arduino board, new, 358
 connecting microcontrollers, 216
 Mac OS X, passkey for pairing, 74
 Windows, password for pairing, 74
 Monski Pong project, 71–74
 negotiating, 75–78
 overview, 71
 pairing, 71–74
 RSSI project, 276

Bluetooth (continued)
 Serial Port Profile (SPP), 71
 transceiver project, 207–216
breadboard
 basic circuits, 42–46
 solderless, 22–23
 voltage regulator, 44–46
Breakout Board, mounting XBees, 195
broadcast messages, 223–226
browsers, phone, 353–354
buffer, serial, 68
buying radios, 217–218
BX-24, 356

C
cables
 Ethernet, 22–23
 USB, 22–23
call-and-response flow control, 68–70
cameras
 viewing infrared, 180
 web (See webcams)
capacitors, common, 22–23
carrier wave, 179
cell towers, trilateration, 277
chat servers, 148
circuits
 accelerometer project, 289
 air quality meter project, 127–128
 analog input, 42–46
 basic, 42–46
 Bluetooth transceiver project,

 207–209, 211
 cat-sensing, 100
 debugging serial-to-Ethernet

 modules, 140
 digital compass project, 285
 digital input, 42–46
 duplex radio transmission project,

 194, 202
 email from RFID project, 334–337
 GPS serial protocol project, 279
 infrared distance ranger project, 267
 MAX3323, 53
 MIDI, 345
 network module project, 119
 ping pong game project, seesaw

 client, 153
 ping pong game project, stepper

 client, 162

Index

MTT_Index.indd 419MTT_Index.indd 419 9/6/07 1:21:33 PM9/6/07 1:21:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

420 MAKING THINGS TALK

circuits (continued)
 potentiometer, 44–46
 RFID home automation project,

 316–317, 319
 RFID reader project, 308, 309, 311, 315
 solar cell data project, 250–254
 toxic chemical sensor project, 230,

 232–238
 transmitter-receiver pair project,

 infrared, 183
 transmitter-receiver pair, radio, 187, 188
 ultrasonic distance ranger project, 269
 upgrading XBee firmware, 227
 voltage divider, 42–45
 voltage regulator, 44–46
class, 163
clients
 defined, 87
 ping pong game project, overview, 151
 ping pong game project, seesaw,

 152–160
 ping pong game project, stepper,

 160–163
 serial-to-Ethernet modules, test,

 143–144
clock, rising and falling edges, 268
CoBox Micro, 42, 116–117
code. See programming
colliding messages, radio, 185
color recognition, 297–301
command mode, modems, 75
command-line interface, 26–30
commands, Bluetooth, 207–209
communication protocols, defined,

 18–19. See also protocols
components, overview, 21–23
computers, types, 19–20
connections
 network models, 82–83
 network module project, 118–125
 networked cat project, 109–111
ConQwest, 302
constructor methods, 164
control characters, defined, 60
control panel module, X10, 318
Control Systems for Live Entertainment,

 347

D
data
 layer, 50–54
 packets, 62
 sheets, 46
 types, Processing, 26
datagrams, 222
datalink layer, packet switching, 86
Dave’s Telnet, 89
dBm, 275
debouncing, 105
debugging
 infrared, 180
 serial-to-Ethernet modules, 139–145
decibel-milliwatts (dBm), 275
delay, debounce, 105
deleting files and directories, 29–30
delimiters, 62
design considerations, 47
desoldering pump, 22–23
diagnostics
 infrared, 180
 serial-to-Ethernet modules, 139–145
diagonal cutter, 22–23
digital
 compass project, 284–287
 input circuit, 42–46
 radio transmission, 184
directed messages, 246–249
directionality, 179
directly connected network model,

 82–83
directories, navigating, 28–29
distance ranging
 active, 272–276
 passive, 265–271
DMX512, 346–347
DNS addressing, 85–86
Domain Name System (DNS)

 addressing, 85–86
duplex radio transmission project
 circuits, 194, 202
 configuring XBee modules, 193–200
 mobile, 206
 overview, 193
 programming microcontroller,

 201–206
programming XBee serial terminal,

 198–200
 two-way communication, 206

E
electrical
 interface, defined, 18
 layer, 50–54
email
 environment variables, 330–332
 networked cat project, 106–108
 overview, 92–93
 RFID, project, 333–339
environment variables
 email, 330–332
 HTTP, 326–328
errata, xv
Ethernet
 addressing, 84
 cables, 22–23
 modules, new, 358
Evocam, 94, 96

F
falling edge, clock, 268
Fan, Doria, 80–81
Faraday cage, 184
feedback loops, timing, 148
files
 controlling access, 29
 managing, 29–30
fire-l FireWire camera, 94
FireWire cameras, 94
firmware, XBee, 226–227
flex sensors, common, 22–23
flow control, 68–70
fondness for monkeys, author’s, 228
force-sensing resistors, common, 22–23
forums
 Arduino, 40
 Wiring, 40
frequency division multiplexing, 185
Fry, Ben, 26
Fwink, 94, 96

G
geocoding, 263, 328–332
Gershenfeld, Neil, ix
Girder, 352
GPS
 active distance ranging, 272
 serial protocol project, 277–283
 trilateration, 277–283
Griffin Proxi, 352

MTT_Index.indd 420MTT_Index.indd 420 9/6/07 1:21:53 PM9/6/07 1:21:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 421

H
habits, networking, 20–21
handshake method flow control,

 68–70
Happy Feedback Machine, 16–17
hardware
 object-oriented, x
suppliers, 362–365
Hartman, Kate, 218–219
Hayes AT command protocol, 75
Head First Java, 166
header pins, 22–23
headers, 62, 326–339
heading, digital compass project,

 284–287
Heathcote, Chris, 264
helping hands, 22–23
home automation project, RFID,

 316–325
HTTP
 environment variables, 326–328
 user agent for phones, 353–354
 web browsing, 89–90
hubs, 83
Human Interface Device (HID) Profile,

 71
Huntington, John, 347
hypertext transport protocol (HTTP).

 See HTTP

I
ID Innovations ID12 RFID reader,

 310–313
IDC connector, 118
identification
 network, 326–339
 physical, overview, 296
 RFID, 305–325
 video, 297–305
idle mode, 205
induction, 184
infrared
 distance ranger project, 266–267
 overview, 179–180
 protocols, 180
 transmitter-receiver pair project,

 181–183
 viewing, 180
installation
 Arduino, 37–39

installation (continued)
 Processing, 24
 Wiring, 37–39
instance variables, 164
interactive systems, timing, 148
interface module, X10, 318
interfaces, defined, 18
interference, radio, 184–185, 189
Internet Protocol (IP). See IP
Internet, private IP devices, 245
IP
 addressing, 84–86
 device, making visible to Internet,

 245
geocoding project, 328–332
IR. See infrared
iSight, 94

J
JitterBox, 78–79
Johansson, Sara, 294–295

K
Kaufman, Jason, 80–81
Konsole, 27

L
lamp control module, X10, 318
Lantronix network modules
 CoBox Micro (See CoBox Micro)
 MatchPort (See MatchPort)
 overview, 116–117
 UDP datagrams, 246–249
 UDP messages, 223–225
 WiMicro (See WiMicro)
 WiPort (See WiPort)
 XPort (See XPort)
latitude, IP address, 328–332
layers of agreement, 50
Learning PHP 5, 32
Learning the Unix Operating System,

 30
LEDs, common, 22–23
less.nano, 29
Linux
 OpenSSH, 27
 ping, 86–87
 serial communication, 32–34
 telnet, 150
listening, 20–21

localhost address, 87
locating things
 distance ranging, active, 272–276
 distance ranging, passive, 265–271
 orientation, 284–292
 overview, 262–265
 trilateration, 277–283
logical layer, 50–54
London, Kati, 218–219
longitude, IP address, 328–332
loopback address, 87
Lotan, Gilad, 250–251, 259

M
Mac OS X
 Bluetooth negotiation, 77
 Bluetooth passkey, 74
 network settings, 84–85
 OpenSSH, 27
 ping, 86–87
 Processing, 26
 serial communication, 32–34
 telnet, 150
 upgrading XBee firmware, 226–227
 webcam, 94–95
macam, 94–95
magnetic fields, digital compass

 project, 284–287
MAKE microcontroller, 357
maps, network, 82–87
marble telephone answering

 machine, 301
MatchPort, 358
MAX3323, 53–55
Media Access Control (MAC)

 addressing, 84
Melo, Mauricio, 80–81
mesh networking, 251
messages
 broadcast, 223–226
 directed, 246–249
 UDP, 222
meter control, air quality meter

 project, 129
microcontrollers
 Arduino (See Arduino)
 ARM, 357
 AVRs, 357
 Basic Stamp, 356
 built-in, 222

MTT_Index.indd 421MTT_Index.indd 421 9/6/07 1:22:21 PM9/6/07 1:22:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

422 MAKING THINGS TALK

microcontrollers (continued)
 BX-24, 356
 commonly used, 22–23
 defined, 19
 DNS utility, 86
 MAKE, 357
 multiple, USB hub, 53
 network modules, 116–125
 network modules, air quality meter,

 126–138
 Phidgets, 357
 PICs, 357
 Propeller, 357
 SitePlayer, 358
 specialty devices, 42
 Wiring (See Wiring)
microwave range, 184
MIDI, 344–346
mobile phone application

 development, 352–356
modems, 71, 75, 83, 124
Mok, Jin-Yo, 146–147, 174–175
monkeys, author’s fondness for, 228
Monski Pong project
 circuit, 56–57
 flow control, 68–70
 parts list, 56
 programming, 61–70
 programming, wireless, 74
 testing sensors, 59–61
 wireless, 71–74
 wiring monkey, 56–58
multimeter, 22–23
multipath effect, 276
multiplexing, 185
multitiered network model, 83
Musicbox, 146–147, 174–175

N
NADA, 352
nameservers, 85–86
nano, 29
needlenose pliers, 22–23
negotiating in Bluetooth, 75–78
net library, 109
netmask, 122
network modules
 air quality meter project, 126–138
 connection project, 118–125
 overview, 116–117

network modules (continued)
 test client program, 143–144
 test server program, 144–145
 troubleshooting, 139–145
networked cat project
 cat mat sensors, 97–106
 cat-sensing circuit, 100
 connections, 109–111
 email, 106–109
 housing and wires, 112
 programming connections, 109–111
 programming email, 106–108
 programming sensors, 101–106
 web page, 94–97
Networked Flowers, 80–81
networks
 addresses, 84–86
 hubs, 83
 identification, 326–339
 layers of agreement, 50
 locating things, 262–265
 maps, 82–87
 mesh, 251
 microcontrollers, air quality meter,

 126–138
 microcontrollers, network modules,

 116–125
 models, 82–83
 modems, 83
 Open Systems Interconnect (OSI),

 50
 packet switching, 86–87
 ping pong game, 150–173
 protocols, defined, 19
 routers, 83
 serial proxy, 347–351
 server, defined, 19
 settings panels, 84–85
 stack, 116
 switches, 83
 UDP, 222
Nguyen, Tuan Anh T., 16–17
NMEA 0183, 278–280
node
 discovery, 225
 identifier, 226
noise, radio, 184–185, 189
nslookup, 92

O
O’Reilly Media, Inc., contacting, xv
O’Sullivan, Dan, xi
object-oriented hardware and

 programming, x
octets, 85
omnidirectional transmission, 179
one-dimensional bar codes, 302
Open Systems Interconnect (OSI), 50
OpenSound Control (OSC), 346
OpenSSH, 27
operating mode, modems, 75
optical recognition, 296
orientation
 accelerometer project, 288–292
 digital compass project, 284–287
OSC, 346

P
Pablo, Angela, 250–251, 259
packets
 overview, 62
 switching, 86–87
Paek, Joo Youn, 48–49
pairing Bluetooth, 71–74
panel-mount type pushbuttons,

 22–23
Parallax RFID reader, 308–310
parts, vendors, xii, 362–365
passive
 distance ranging, 265–272
 RFID tags, 305–307
pathnames, 28
pattern recognition, 301
payload, 62
PBX, 356
PCB-mount type pushbuttons, 22–23
Peek, Jerry, 30
Perform-o-shoes, 220–221
permissions, xiii
Phidgets, 357
PHP, overview, 30–32
physical
 identification, overview, 296
 interface, defined, 18
 layer, 50–54
 location, overview, 262–265
Physical Computing: Sensing and

 Controlling the Physical World, xi
PicBasic Pro, 41

MTT_Index.indd 422MTT_Index.indd 422 9/6/07 1:22:41 PM9/6/07 1:22:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 423

PICs, 357
ping, 86–87
ping pong game project
 clients, overview, 151
 overview, 150
 seesaw client, circuit, 153
 seesaw client, overview, 152–156
 seesaw client, programming,

 156–160
 seesaw client, sensors, 157–158
 server, player object, 163–164
 server, programming, 164–173
 stepper client, circuit, 162
 stepper client, overview, 160–161
 stepper client, programming, 163
 stepper client, sensors, 160, 163
 test server, 150
pitch, 288
port
 forwarding, 245
 mapping, 245
 numbers, 87–88
position, trilateration, 277–283
potentiometers, 22–23, 44–46
power
 connectors, 22–23
 supplies, 22–23
Powerline Ethernet modules, 358
private
 branch telephone exchange (PBX),

 356
 IP addresses, 86
Processing, 24–26
Processing: A Programming Handbook

 for Visual Designers and Artists, 26
profiles, Bluetooth, 71
programming
 accelerometer project, 288–292
 air quality meter project, meter

 control, 129
 air quality meter project,

 microcontroller, 132–138
 air quality meter project, scraping,

 130–131
 Arduino, blink example, 40
 Arduino, serial example, 41–42
 bar code recognition project,

 303–305
 Bluetooth transceiver project,

 210–215

programming (continued)
 cat connections, 109–111
 cat email, 106–108
 cat mat sensors, 101–106
 color recognition project, 298–300
 digital compass project, 286–287
 duplex radio transmission project,

 microcontroller, 201–206
 duplex radio transmission project,

 XBee serial terminal, 198–200
 email environment variables,

 331–332
 email from RFID project, 338–339
 GPS serial protocol project, 281–283
 HTTP environment variables,

 326–328
 infrared distance ranger project,

 266
 IP geocoding project, 328–332
 MIDI, 344–346
 Monski Pong project, 61–70
 network module project, 121–123
 network modules, testing, 139–145
 object-oriented, x
 ping pong game project, seesaw

 client, 156–160
 ping pong game project, server,

 164–173
 ping pong game project, stepper

 client, 163
 RFID home automation project,

 317, 320–324
 RFID readers project, 308–314
 RSSI project, XBee, 273–275
 serial-to-Ethernet modules, testing,

 139–145
 SoftwareSerial, 139–142
 solar cell data project, 254–258
 toxic chemical sensor project,

 238–245
 transmitter-receiver pair project,

 infrared, 182
 transmitter-receiver pair project,

 radio, 189–191
 UDP messages, Lantronix, 223–225
 ultrasonic distance ranger project,

 270–271
 wireless Monski Pong project, 74
 Wiring, blink example, 40
 Wiring, serial example, 41–42

projects
 accelerometer, 288–292
 air quality meter, 126–138
 bar code recognition, 303–305
 Bluetooth transceiver, 207–216
 color recognition, 298–300
 digital compass, 284–287
 duplex radio transmission, 193–206
 email from RFID, 333–339
 GPS serial protocol, 278–283
 infrared distance ranger, 266–267
 IP geocoding, 328–332
 Monski Pong, 56–70
 negotiating in Bluetooth, 75–78
 network module connection,

 118–125
 networked cat, 94–112
 ping pong game, 150–173
 RFID readers, 308–315
 RFID, home automation, 316–325
 RSSI, Bluetooth, 276
 RSSI, XBee, 273–275
 toxic chemical sensor, 228–245
 transmitter-receiver pair, infrared,

 181–183
 transmitter-receiver pair, radio,

 186–191
 ultrasonic distance ranger, 268–271
 wireless Monski Pong, 71–74
 wireless solar cell data, 250–258
Propeller, 357
protocols
 Bluetooth, 71
 defined, 18–19
 DMX512, 346–347
 GPS serial, project, 278–283
 Hayes AT command, 75
 HTTP, 89
 infrared, 180
 IP, 84–86
 MIDI, 344–346
 NMEA 0183, 278–280
 OSC, 346
 radio, 185
 RFID, 306
 Service Discovery, 71
 SMTP, 92
 TCP, 86, 149
 UDP, 86, 149, 222
 X10, 318

MTT_Index.indd 423MTT_Index.indd 423 9/6/07 1:24:08 PM9/6/07 1:24:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

424 MAKING THINGS TALK

proxies, 347–352
public IP addresses, 86
pull-down resistors, 42
pull-up resistors, 42
pulse width modulation (PWM), 127
pulses, 18–19
pushbuttons, 22–23
PuTTY, 27, 32–33
PWM, 127

Q
QR (Quick Response) codes,

 302, 303–305

R
radio
 analog transmission, 184
 antennas, 184
 Bluetooth transceiver project,

 207–216
 buying, 217–218
 digital transmission, 184
 duplex radio transmission project,

 193–206
 frequency identification (See RFID)
 interference, 184–185
 multiplexing, 185
 overview, 179–180, 184–185
 protocols, 185
 RSSI project, Bluetooth, 276
 RSSI project, XBee, 273–275
 settings, solar cell data project, 250
 settings, toxic chemical sensor

 project, 231–232
 transceivers, 192
 transmitter-receiver pair project,

 189–191
 Wi-Fi, 217
Reas, Casey, 26
received signal strength. See RSSI
receivers
 defined, 179
 transmitter-receiver pair project,

 infrared, 181–183
 transmitter-receiver pair project,

 radio, 189–191
Recommended Minimum specific

 global navigation system satellite
 data, 280

relative path, 28

remote access
 command-line interface, 26–30
 PHP, 30–32
 serial communication tools, 32–34
removing directories, 29
resistors
 common, 22–23
 force-sensing, common, 22–23
 pull-down, 42
 pull-up, 42
 variable, common, 22–23
RF. See radio
RFID
 email, project, 333–339
 home automation project, 316–325
 overview, 296, 305–307
 readers project, 308–315
ring network model, 82–83
rising edge, clock, 268
RMC, 280
roll, 288
routers, 83
routines, Processing, 26
RS-232 serial protocol, 53–54
RSSI
 Bluetooth project, 276
 XBee project, 273–275
rxvt, 27

S
safety
networked cat project, 112
 projects, xiii
 RFID capsule insertion, 307
Schneider, Andrew, 220–221
SCL pin, 268
scraping, 126, 129–131
screwdrivers, 22–23
SDA pin, 268
seesaw client, ping pong game

 project, 152–160
sensors
 analog, common, 22–23
 cat mat, 97–106
 color, 300
 distance rangers, 265–271
 ping pong game project, seesaw

 client, 157–158
 ping pong game project, stepper

 client, 160, 163

serial
 buffer, 68
 clock pin, 268
 communication (See serial

 communication)
 data pin, 268
 Ethernet (See serial-to-Ethernet

 modules)
 ports (See serial ports)
 protocols (See serial protocols)
 USB (See serial-to-USB converter)
serial communication
 Arduino, 41–42
 asynchronous, 50–51
 layers of agreement, 50
 Linux, 32–34
 Mac OS X, 32–34
 synchronous, 50–51
 Windows, 32–33
 Wiring, 41–42
serial ports
 Arduino, 41
 Linux communication, 32–34
 Mac OS X communication, 32–34
 sharing, 34
 USB hub, 53
 Windows communication, 32–33
 Wiring, 41
serial protocols
 defined, 19
 RS-232, 53–54
 TTL serial, 52
 Universal Serial Bus (USB), 52–53
serial-to-Ethernet modules
 air quality meter project, 126–138
 connection project, 118–125
 overview, 116–117
 test client program, 143–144
 test server program, 144–145
 troubleshooting, 139–145
serial-to-USB converter, 22–23
servers
 defined, 87
 ping pong game project, player

 object, 163–164
 ping pong game project,

 programming, 164–173
 ping pong game project, test, 150
 test, serial-to-Ethernet modules,

 144–145

MTT_Index.indd 424MTT_Index.indd 424 9/6/07 1:24:29 PM9/6/07 1:24:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 425

Service Discovery Protocol, 71
session, 149
shape recognition, 301
shields
 Arduino, 36
 Arduino XBee, 196–197
 radio, 184
Simple Mail Transport Protocol

 (SMTP). See SMTP
SitePlayer, 358
Sjaastad, Mosse, 294–295
sketches, 24
Sklar, David, 32
SMS text messaging, 354–355
SMTP, 92
Sniff, 294–295
sockets, 149
software
 interface, defined, 18
 Processing, 24–26
 suppliers, 366–367
 terminal emulation programs, 32–34
 X-CTU, 226–227
SoftwareSerial, 139–142
solar cell data project
 circuits, 250–254
 graphing, 254–258
 overview, 250
 programming, 254–258
 radio settings, 250
solder, 22–23
soldering iron, 22–23
solderless breadboard, 22–23
Sridhar, Sonali, 260–261
Sriskandarajah, Sai, 218–219
ssh, 27
star network model, 82–83
Strang, John, 30
subnet mask, 85, 122
suppliers, xii, 362–367
switches, network, 83
synchronous serial communication,

 50–51

T
tags, RFID, 305–307
tail, 62
TCP
 packet switching, 86
 socket connections, 149

TCP/IP stack, 116
telnet, 27
 Dave’s, 89
 Linux, 150
 Mac OS X, 150
 Windows, 150
Terminal, 27
terminal emulation programs, 32–34
test leads, 22–23
testing serial-to-Ethernet modules,

 139–145
text messaging, 354–355
time division multiplexing, 185
Tinker.it, 351–352
TinkerProxy, 351–352
Todino-Gonguet, Grace, 30
tools
 overview, 21–23
 remote access, command-line

 interface, 26–30
 serial communication, 32–34
 software, overview, 24–32
 suppliers, 362–365
toxic chemical sensor project
 circuits, 230, 232–238
 overview, 228–229
 programming, 238–245
 radio settings, 231–232
transceivers
 Bluetooth transceiver project,

 207–216
 defined, 19, 179
 duplex radio transmission project,

 193–206
 radio, overview, 192
Transmission Control Protocol (TCP).

 See TCP
transmitter-receiver pair project
 infrared, 181–183
 radio, 186–191
transmitters, defined, 179
transport layer, packet switching, 86
triangulation, 277
trilateration, 277–283
troubleshooting
infrared, 180
serial-to-Ethernet modules, 139–145
TTL serial protocol, 52
two-dimensional bar codes, 302,

 303–305

U
UDP
 Lantronix, datagrams, 246–249
 Lantronix, querying for, 223–225
 overview, 222
 packet switching, 86
 TCP, 149
ultrasonic distance ranger project,

 268–271
Uncommon Projects, 114–115
Unibrain’s fire-l FireWire Camera, 94
Unicode, 60
Universal Product Code (UPC), 302
Universal Serial Bus (USB) protocol,

 52–53
UPC, 302
updates
 Arduino, 37
 Wiring, 37
 XBee firmware, 226–227
uploading images, catcam, 94–97
Urban Sonar, 218–219
USB
 cables, common, 22–23
 cameras, 94–95
 protocol, 52–53
User Datagram Protocol (UDP).

 See UDP

V
variable resistors. See analog sensors

 (variable resistors)
variables
 email environment, 330–332
 HTTP environment, 326–328
 instance, 164
 Processing, 26
vendors, xii, 362–367
video identification
 bar code recognition, 301–302
 bar code recognition project,

 303–305
 color recognition, 297, 301
 color recognition project, 298–300
 overview, 297
 shape and pattern recognition, 301
viewing infrared, 180
voltage
 divider circuit, 42–45
 regulators, 22–23, 44–46

MTT_Index.indd 425MTT_Index.indd 425 9/6/07 1:24:56 PM9/6/07 1:24:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

426 MAKING THINGS TALK

W
web
 browsing, 87–91
 page, air quality meter project,

 129–131
 page, networked cat project, 94–97
 scraping, 126, 129–131
webcams
 bar code recognition project,

 303–305
 color recognition project, 298–300
 networked cat project, 94–95
When Things Start to Think, ix
Wi-Fi, 217
WiMicro, 116–117
Windows
 Bluetooth password for pairing, 74
 Bluetooth negotiation, 77
 network settings, 84–85
 ping, 86–87
 PuTTY, 27, 32–33
 serial communication, 32–33
 telnet, 89, 150
 upgrading XBee firmware, 226–227
 webcam, 94–95
WiPort, 42, 116–117
wire
 hookup, common, 22–23
 stripper, 22–23
wireless
 Bluetooth transceiver project,

 207–216
 Bluetooth, Monski Pong project,

 71–74
 duplex radio transmission project,

 193–206
 infrared overview, 179–180
 limitations, 178
 Monski Pong project, 71–74
 overview, 178
 radio overview, 179, 184–185
 solar cell data project, 250–258
 transmitter-receiver pair project,

 infrared, 181–183
 transmitter-receiver pair project,

 radio, 186–191
 Wi-Fi, 217
Wiring
 analog input circuit, 42–46
 Arduino, compared with, 36

Wiring (continued)
 basic circuits, 42–46
 blink example program, 40
 digital input circuit, 42–46
 forums, 40
 installation, 37–39
 overview, 34–44
 serial example program, 41–42
 updates, 37
 voltage divider circuit, 42–45
 wiring components, 42–44

X
X10, 318
XBee
 802.15.4 messages, 225–226
 duplex radio transmission project,

 193–206
 new, 358
 RSSI project, 273–275
 solar cell data project, 250–258
 toxic chemical sensor project,

 228–245
 upgrading firmware, 226–227
XPort
 new, 358
 overview, 42, 116–117
 solar cell data project, 250–258
 toxic chemical sensor project,

 228–245
 UDP datagrams, Lantronix,

 249–249
xterm, 27

Y
yaw, 288
YBox, 114–115

Z
ZigBee, 193-206
 mesh networking, 251
 serial terminal, 198-206
 wireless communication, 178
 XBee 802.15.4 modules, 193
Zipper Orchestra, 48–49
Zygotes, 176–177

MTT_Index.indd 426MTT_Index.indd 426 9/6/07 1:25:43 PM9/6/07 1:25:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

MTT_Index.indd 427MTT_Index.indd 427 9/6/07 1:26:55 PM9/6/07 1:26:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

MTT_Backmatter_Ads.indd Sec1:432MTT_Backmatter_Ads.indd Sec1:432 9/6/07 1:39:10 PM9/6/07 1:39:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Tom Igoe

Make: PROJECTS

Making
Things Talk

Practical
Methods for
Connecting

Physical Objects

PROJECTS
AND IDEAS
TO CREATE

TALKING
OBJECTS FROM

ANYTHING

Hardware/General

y(7IA5J6*PLKPLK(+,!?!;!;!}
US $29.99 CAN $35.99
ISBN–10: 0-596-51051-9
ISBN–13: 978-0-596-51051-0

Microcontrollers, personal computers,
and web servers talking to each other.

This book is perfect for people with little technical

training but a lot of interest. Maybe you’re a science

teacher who wants to show students how to

monitor weather conditions at several locations at

once, or a sculptor who wants to stage a room of

choreographed mechanical sculptures.

Whether you need to plug some sensors in your home

to the Internet or create a device that can interact

wirelessly with other creations, Making Things Talk

explains exactly what you need.

 You will:

» Make your pet’s bed send you email.

» Make your own game controllers that
communicate over a network.

» Use ZigBee, Bluetooth, Infrared, and plain
old radio to transmit sensor data wirelessly.

» Work with three easy-to-program, open
source environments: Arduino/Wiring,
Processing, and PHP.

» Write programs to send data across the
Internet based on physical activity in your
home, offi ce, or backyard.

Tom Igoe teaches courses in physical computing and networking at the
Interactive Telecommunications Program in the Tisch School of the Arts at
New York University. In his teaching and research, he explores ways to allow
digital technologies to sense and respond to a wider range of human physical
expression. He co-authored Physical Computing: Sensing and Controlling the
Physical World with Computers with Dan O’Sullivan, which has been adopted
by numerous digital art and design schools around the world. He is a contributor
to MAKE magazine and a collaborator on the Arduino open source micro-
controller project. He hopes someday to work with monkeys, as well.

Through twenty-six simple projects, Making Things
Talk shows how to get your creations to talk with
one another by forming networks of smart devices
that carry on conversations with you and your
environment. Here are just a few of the projects:

Blink
Your very fi rst program.

Monski pong
Control a video game
with a fl uffy pink
monkey.

Networked Air Quality
Meter
Download and display
the latest report for your
city.

XBee Toxic Sensor
Use ZigBee, sensors,
and a cymbal monkey to
warn of toxic vapors.

Bluetooth GPS
Build a battery-powered
GPS that reports its
location over Bluetooth.

RFID Reader Bowl
Turn your lights off
when you leave the
home or offi ce.

Building electronic projects that interact with the physical world is good fun.
But when devices that you’ve built start to talk to each other, things really start
to get interesting. Making Things Talk demonstrates that once you fi gure out
how objects communicate — whether they’re microcontroller-powered devices,
email programs, or networked databases — you can get them to interact.

www.oreilly.com

Making Things Talk
Make: PROJECTS M

ake: PR
O

JEC
TS

Tom
 Igoe

M
aking Things Talk

www.it-ebooks.info

http://www.it-ebooks.info/

