
Bachelor thesis

Creating interactive web pages
using the Exhibit framework

carried out by

Josef Dabernig
Engerthstrasse 110-118/11/22

A-1200 Vienna, Austria

Assessor: FH-Prof. Dipl.-Ing. Harald Wahl

Vienna, June 9th, 2008

carried out at the
University of Applied Science Technikum Wien
Study course Computer Science

Abstract & Kurzfassung

Abstract & Kurzfassung

Abstract

This thesis focuses on the open source JavaScript framework, Exhibit. Since 2006, it allows
users to create data-centric interactive websites, so called exhibits. Minimal setup efforts
quickly lead to a visual appealing results powered by AJAX features like live filtering, sorting
and grouping. When creating an exhibit, the user also can choose between various data
formats like spreadsheets, TSV or RDF/XML.

In “Creating interactive web pages using the Exhibit framework”, the reader will learn what
Exhibit is, how it works and how to create a first exhibit. The thesis also aims to list and
extend technical documentation, available on Exhibit. This is realized by providing a
complete listing of existing documentation resources and by using Exhibit itself to
demonstrate, how documentation available on Exhibit can be extended. Afterwards, the
demonstration of two real-world use cases shows, that Exhibit also fits into database-driven,
three-tier web applications.

Users of Exhibit without any programming skills may learn about the basic concepts in a
learning-by-doing process accompanied by source code examples and their explanation.
Developers familiar with web design technologies find a technical documentation reference
and additional examples of using Exhibit in diverse environments.

Kurzfassung

Die folgende Arbeit beschreibt das Open Source JavaScript Framework Exhibit. Seit 2006
ermöglicht es Benutzern die Erstellung sogenannter exhibits - interaktive Websiten zur
Präsentation von Daten. Erste, visuell ansprechende Ergebnisse sind bereits nach einem
minimalen Konfigurationsaufwand möglich und beinhalten AJAX Funktionalitäten wie
Filterung, Sortierung und Gruppierung in Echtzeit. Beim Erstellen von exhibits kann der
Benutzer ausserdem zwischen verschiedenen Datenformaten wie einer Excel Tabelle, TSV
oder RDF/XML wählen.

„Creating interactive web pages using the Exhibit framework” vermittelt Sinn und Zweck von
Exhibit, seine Funktionsweise und wie ein erstes exhibit erstellt werden kann. Ziel der Arbeit
ist auch die Auflistung und Erweiterung technischer Dokumentation bezüglich Exhibit. Hierzu
dient einerseits eine Referenz bestehender Dokumentationsressourcen, als auch der
Anwendung von Exhibit selbst zur Darlegung weiterer Möglichkeiten, die vorhandene
Dokumentation zu erweitern. Weiters folgen Demonstrationen zweier realer Beispiele,
welche aufzeigen, dass Exhibit auch im Umfeld einer Drei-Schichten-Architektur mit
Datenbankanbindung eingesetzt werden kann.

Benutzer von Exhibit ohne Programmierkenntnisse erlernen grundlegende Konzepte im Zuge
praktischer Anleitungen, kombiniert mit Quellcode und dessen Dokumentation. Erfahrene
Web-Entwickler finden eine Referenz zu technischer Dokumentation und weitere Beispiele
der Anwendung von Exhibit in unterschiedlichen Umgebungen.

FH Technikum Wien Page 2

Statutory Declaration

Statutory Declaration

“I declare that I have developed and written the enclosed thesis entirely by myself and have
not used sources or means without declaration in the text. Any thoughts or quotations which
were inferred from these sources are cleary marked as such. This thesis was not submitted
in the same or in a substantially smiliar version, not even partially, to any other authority to
achieve an academic grading and was not published elsewhere. “

Vienna, June 9th 2008
Josef Dabernig

FH Technikum Wien Page 3

Statutory Declaration

Table of Contents

Abstract & Kurzfassung...2
Statutory Declaration...3
 1 Problem & Objectives..5

 1.1 Requirements..5
 1.2 Target Groups..5
 1.3 Approach...5
 1.4 Chapter Overview..6

 2 Introduction to Exhibit..7
 2.1 Semantic Web...7
 2.2 SIMILE Project...7
 2.3 Exhibit..7

 3 Basics of Exhibit..9
 3.1 Intentions and Basic Concepts of Exhibit...9
 3.2 History of Exhibit..9
 3.3 Architecture..10

 4 Usage of Exhibit..11
 4.1 Starting with a minimal Setup...11

 4.1.1 Creating the Data...11
 4.1.2 Creating the Presentation...12
 4.1.3 Examining the first Result...13

 4.2 HTML Configuration Options..14
 4.2.1 Include Exhibit API Extensions...14
 4.2.2 Add & Customize Views...15
 4.2.3 Add & Customize Facets..18
 4.2.4 Add & Customize Lenses...20
 4.2.5 Use Coders, Coordinators, Expressions and Formats..22

 4.3 Data Options..22
 5 Technical Documentation of Exhibit...23

 5.1 Sources of Information...23
 5.2 API Documentation..24
 5.3 “Exhibit Code Documentation” exhibit..24
 5.4 “Exhibit SVN History” exhibit..27

 6 Real-World Use Cases based on Exhibit...29
 6.1 Auslandsdienst WebNeu..29

 6.1.1 Provide data using View Classes...30
 6.1.2 Integrate Exhibit using the InlineImporter...31
 6.1.3 Generate HTML Code using Templates..31

 6.2 OpenEvents...32
 7 Conclusion & Discussion...35

 7.1 Community...35
 7.2 Documentation...35
 7.3 Performance..36

 8 Listings..37
 8.1 List of Illustrations..37
 8.2 List of References..37

FH Technikum Wien Page 4

Problem & Objectives

 1 Problem & Objectives

Exhibit is an open source tool, which aims to simplify data publishing processes on the web.

This thesis was written because of a personal believe, that Exhibit both brings good concepts
and a proven implementation. Being an open source framework which enables publishers
with low technical skills to provide their data in a feature-rich way, it fulfills a desire of
equalization to the world wide web as an open medium.

 1.1 Requirements

At the time of writing, Exhibit is a quite stable framework, but compared to large open source
projects like Firefox or Ubuntu, it is much smaller. In comparison to such large projects,
Exhibit is behind in the size of its community, the number of contributors and the availability
of documentation. Due to this facts, this thesis was written, in order to fulfill the following
requirements:

● Explain purpose and basic concepts of Exhibit
● Illustrate Exhibit's usage by examples
● Extend documentation, available for Exhibit

 1.2 Target Groups

 “Creating interactive web pages using the Exhibit framework” focuses on two target groups:

● Users without any or with limited programming skills may learn from the advantages
of using Exhibit to publish their data in chapters 3 and 4.

● Developers, familiar with web development technologies like HTML, JavaScript and
JSON, additionally can find technical documentation on Exhibit in chapters 5 and 6.

Note, that chapter 6 Real-World Use Cases based on Exhibit also investigates the
programming languages Java and Python and the web development frameworks Zope and
Plone. In order to completely understand the examples described, a basic knowledge of
these technologies would be helpful.

 1.3 Approach

The approach taken, was reading documentation, currently available on Exhibit. Missing
parts where interpreted from or even requested at the newsgroup, where Exhibit's core
developer, David Huynh, eagerly supports users and contributors of Exhibit. Additionally, the
source code itself and SVN commits where analyzed and Javascript debugging using the
Mozilla Firefox extension Firebug also helped a lot understanding, what's going on.

FH Technikum Wien Page 5

Problem & Objectives

 1.4 Chapter Overview

To fulfill the stated requirements, the thesis consists of several parts:

● Chapter 2 Introduction to Exhibit covers a short overview of the basic intentions of the
Semantic Web, the existence of a Semantic Web-dedicated project named SIMILE
and homed at the MIT and its sub-project, Exhibit.

● Chapter 3 Basics of Exhibit provides an overview of the intentions and basic concepts
of Exhibit, a short summary of its historical background and describes the
architecture, Exhibit is built on.

● Chapter 4 Usage of Exhibit takes Exhibit into action by examining the creation of a
basic exhibit. Further, possibilities of adding advanced features to the created exhibit,
by using Exhibit's core functionalities or available API Extensions are discussed.

● Chapter 5 Technical Documentation of Exhibit includes a listing of sources of
information, available on Exhibit. It further discusses the topic API documentation and
presents a prototype “Exhibit Code Documentation”, realized using Exhibit.

● Chapter 6 Real-World Use Cases based on Exhibit shows practical use cases based
on Exhibit.

● Chapter 7 Conclusion & Discussion summarizes the thesis and reflects on the
question, if the thesis is able fulfill its requirements. Also, the future of Exhibit and its
relation to other ongoing projects are discussed.

FH Technikum Wien Page 6

Introduction to Exhibit

 2 Introduction to Exhibit

The introduction covers a short overview of the basic intentions of the Semantic Web, the
existence of a Semantic Web-dedicated project named SIMILE and homed at the MIT and its
sub-project, Exhibit.

 2.1 Semantic Web

The World Wide Web Consortium (W3C) published numerous specifications, publications
and presentations dedicated related to the common topic “Semantic Web Activity”. On its
dedicated web site, the W3C introduces the Semantic Web by the following sentence:

“The Semantic Web provides a common framework that allows data to be shared and
reused across application, enterprise, and community boundaries”

(World Wide Web Consortium, 2008a)

A sequent introduction of the topic reveals, that much data is kept within applications and
can't be accessed from outside today. This is because a lack of semantic readability of the
data. The Semantic Web is a collection of approaches that enforce semantics on data. Thus
the data would become reusable and may be interpreted, reused and transformed by third
party applications. (World Wide Web Consortium, 2008b)

 2.2 SIMILE Project

The SIMILE Project is an umbrella project conducted by the Massachusetts Institute of
Technology (MIT), which stands for "Semantic Interoperability of Metadata and Information in
unLike Environments". SIMILE consists of numerous open source projects, representing
tools in the context of semantic-web-enabling technologies. (SIMILE Project, 2008 and
STEFANO, 2007)

This thesis is about Exhibit, one of those sub-projects homed at SIMILE. Exhibit itself builds
upon other SIMILE projects. For example it uses Babel as a service for real-time conversion
between various data formats.

 2.3 Exhibit

Exhibit is "a very lightweight AJAX Framework that lets individuals who know only basic
HTML create web pages containing rich, dynamic visualizations of structured data and
supporting faceted browsing and sorting on that structured data" (HUYNH et al. 2007, p.1).
This means, that Exhibit was developed for the "average user". By requiring minimal setup, it
supports the creation of data-centric websites, which are able to compete with professional
ones in terms of visual appeal. (HUYNH 2007a, p.17).

As chapter 6 Real-World Use Cases based on Exhibit demonstrates, Exhibit's features also
fit well for rich presentation of data in complex web applications. Although its main focus on
smallish sets of data implies a limit in terms of scalability. Chapter 7 Conclusion & Discussion
deals with topics like this one and also provides a look into possible, planned and ongoing
improvements on the Exhibit framework.

FH Technikum Wien Page 7

Introduction to Exhibit

The following screen shot shows the Exhibit web site, including a mission statement and
browseable example exhibits:

FH Technikum Wien Page 8

Illustration 1: Exhibit web site hosted by SIMILE, showing two example exhibits

Basics of Exhibit

 3 Basics of Exhibit

This chapter provides an overview of the intentions and basic concepts of Exhibit, a short
summary of its historical background and describes the architecture, Exhibit is built on.

 3.1 Intentions and Basic Concepts of Exhibit

David Huynh (2007, p.35) states in his thesis "User Interfaces Supporting Casual Data-
Centric Interactions on the Web", that Exhibit "targets casual users instead of large
publishers". His principal intentions are described the beginning of part 3, "Publishing Data".
The stated chapter describes Exhibit in a very detailed way. A summary of the intentions and
basic concepts behind Exhibit, stated by Huynh in his thesis might look like the following:

Professional web site features like searching, sorting, filtering, comparison, maps, etc. have
become a standard in todays websites. Large publishers have the resources to build feature-
rich websites, but small publishers don't. Exhibit aims to provide small publishers a tool set
which allows them to visualize their data in a visual-appealing way, including professional site
features, as stated above, out-of-the-box. The publishing process based on Exhibit should
support separating the data from its presentation and allow the publisher to edit the data in
the personally preferred format. As the introductory section of "Publishing Data" ends, "these
ideas have been built into the Exhibit lightweight data publishing framework, packaged as a
Web API".

(HUYNH, 2007a, p.47ff)

 3.2 History of Exhibit

Checking the history of SIMILE's publicly accessible SVN repository, David Huynh committed
the first development version of Exhibit on August the 27th 2006. At this point of time, the
project was named "rubik". But some weeks later, its name was changed to Exhibit, due to
trademark and copyright issues, as stated in the SVN logs. (revisions 4885 and 5009 of
http://simile.mit.edu/repository/exhibit)

The first version of the Exhibit site at the SIMILE wiki has been published on 20th of
September 2006 and already stated the intentions for Exhibit:

"The goal of this project is to enable 'data artists' to show off their cool and tale-telling data to
world-wide viewers by embedding 'exhibits' in their web pages and configuring these exhibits
to best illuminate the data." (HUYNH, 2006)

Until May 2008, the SIMILE wiki received a total number of 126 pages containing
documentation on the Exhibit framework (Massachusetts Institute of Technology, 2008a). On
page 75 of David Huynh's thesis, "User Interfaces Supporting Casual Data-Centric
Interactions on the Web", the main author of Exhibit states that 8 months after the release of
Exhibit 1.0 there where more than 800 web pages using the Exhibit framework. (HUYNH
2007a, p.75)

Development of Exhibit 2.0 was started in the first months of 2007 and a page named
"Exhibit/2.0 Release" exists on the SIMILE wiki, which was released on 26th August 2007.
(revision 6226 of http://simile.mit.edu/repository/exhibit/branches/2.0 and Massachusetts
Institute of Technology, 2008b)

FH Technikum Wien Page 9

http://simile.mit.edu/repository/exhibit/branches/2.0
http://simile.mit.edu/repository/exhibit

Basics of Exhibit

 3.3 Architecture

David Huynh's thesis provides information on the architecture of Exhibit in two parts:
1. The bigger part focuses on the interface level. It provides information on which

functionalities are available and how to use them. (HUYNH, 2007a, p. 49ff)

2. A shorter chapter describes on implementation level, the technical realization of the
features, described on interface level (HUYNH, 2007a, p. 68)

The following illustration, adapted from the thesis, gives an overview of Exhibit's architecture:

At the bottom is the data layer consisting of the database, the expression language parser
and evaluator, and importers and exporters. At the top is the user interface layer, which
consists of three sub-layers:

● UI contexts and localization resources—storage of presentation settings for the rest
of the user interface layer.

● collections and coders – components that do not render to the screen but determine
what data widgets should render and how to render it.

● widgets which perform the actual rendering and support interactions.

(HUYNH, 2007a, p. 68)

FH Technikum Wien Page 10

Illustration 2: Exhibit's architecture (HUYNH, 2007a, p. 69)

Usage of Exhibit

 4 Usage of Exhibit

In here, Exhibit will be taken into action by examining the creation of a basic exhibit. Further,
possibilities of adding advanced features to the created exhibit, by using Exhibit's core
functionalities or available API Extensions will discussed.

Again, David Huynh's thesis provides in-depth information on the creation of an exhibit.
Steps which are already explained in his thesis in detailed way, will be mentioned in a
minimal way to avoid inventing the wheel twice while still giving sufficient information to get
first-time users started.

The first use case is the creation of an interactive, personal curriculum vitae. On the Exhibit
website (Massachusetts Institute of Technology, 2008c) one may read, that creating a
feature-rich, interactive website for structured data using Exhibit is easy and wouldn't require
any programming skills. Exhibit's publisher interface will be used to accomplish this task.
David Huynh describes it in his thesis (HUYNH, 2007a, p.53ff). According to the introduction
of the publisher interface, creating an exhibit requires two steps: creating the data and
creating its presentation.

 4.1 Starting with a minimal Setup

The first part of implementing the personal CV is the creation of a minimal setup. The
minimal setup includes creation and preparation of the data for the exhibit. Next, a
presentation will be configured and the minimal setup is finished by examining the first
results.

 4.1.1 Creating the Data

The data for the personal CV is already existent and stored within a local spreadsheet.
Exhibit is able to read data from a Google Spreadsheet, a process which is described at the
SIMILE wiki.

The following table shows an abbreviation of the data, the Google Spreadsheet contains:

The first row specifies the property names for Exhibit, which have to be wrapped in “{ }”. The
from, to and the link properties also specify their value types. For example “{from:date}”
specifies, that the from property will be a date. (DUOSHUTE, 2008).
All sequent rows represent the CV data items. Every item has to define a unique id, if the
label can't be ensured to be unique. Different types distinguish between work employments,
projects, website-launches and so on. The from and to properties define start and beginning
of the work or project. Website-launches will only contain a start date. Other properties like
place, position and field add further description to the item and a link of type url refers to
a related web site.

Generating the URL, Exhibit needs to import data from the Google Spreadsheet, is a bit
tricky: The “Publish” button opens a side bar which contains a link to “More publishing
options”. Selecting the File format “RSS” and pressing the “Generate URL” button produces

FH Technikum Wien Page 11

Illustration 3: Google Spreadsheet data for the personal CV, abbreviated

{id} {type} {label} {from:date} {to:date} {place} {position} {field} {location} {hours} {link:url}
1 volunteer 2008-08-01 2009-07-31 Volunteer Nicaragua 40 http://auslandsdienst.at
2 work 2008-03-01 2008-06-13 Employee Vienna 38.5 http://smart-infosys.com

15 project OpenEvents.at 2008-02-20 2008-04-30 Vienna http://openevents.at
16 project Radlwolf.at 2005-09-20 2006-01-30 Vienna http://www.radlwolf.at
20 website-launch The Mystery 2008 http://www.the-mystery.at

Österreichische
r
Auslandsdienst

Casa de
los Tres
Mundos

Austrian
Social
Service

Smart
Information
Systems

Web
Development;
OpenEventsCo-

Worker
Web
Development

Website
for
disabled
cyclist
Wolfgang
Dabernig

Project
Leader

Web
Development;
Project
ManagementWeb
Development

Usage of Exhibit

an URL. Changing the alt=rss parameter to alt=json-in-script results in the correct URL
which provides the personal CV data in JSON format.

A published read-only version of the personal CV is available at
http://spreadsheets.google.com/pub?key=pYUqUwUxZGmlikD4CPEt-WA

The URL to the JSON export of the personal CV is
http://spreadsheets.google.com/feeds/list/o07573463909577017953.6376616843510976610/od6/p
ublic/basic?alt=json-in-script

 4.1.2 Creating the Presentation

The following lines of code contain the minimal required configuration to get an exhibit.

Note, that it even contains optional parts, as the page title information, an inline-style sheet
and an div-element wrapping the Exhibit ViewPanel.

<html>
<head>
<title>Josef Dabernig - CV</title>

<!-- link to cv data, provided by a google spreadsheet -->
<link rel="exhibit/data" type="application/jsonp"

href="http://spreadsheets.google.com/feeds/list/o07573463909577017953.637661684
3510976610/od6/public/basic?alt=json-in-script"

ex:converter="googleSpreadsheets" />

<!-- include exhibit api -->
<script src="http://static.simile.mit.edu/exhibit/api-2.0/exhibit-api.js"

type="text/javascript"></script>

<style type="text/css">
 body { font-size: 0.8em; }
 #exhibit-wrapper { margin: 1em; border: 1px solid black; padding: 1em; }
</style>

</head>
<body>
<h1>Josef Dabernig - CV</h1>

<!-- beginning of the area, where exhibit will do its magic -->
<div id="exhibit-wrapper">

<div ex:role="viewPanel">
 <div ex:role="view"></div>
</div>

<!-- end of the area, where exhibit will do its magic -->
</div>

</body>
</html>

The first notable part of the code is link to cv data, realized by an HTML link to it. As stated
before, the CV data is served by a Google Spreadsheet. Besides including data from Google
Spreadsheets, Exhibit also supports a number of additional data sources, there exist various
possibilities which are described at chapter 4.3 Data Options.

Next comes include exhibit api through linking to its freely available Javascript library.

Within the exhibit-wrapper one notes, that Exhibit introduces its own XML name space. The
ex:role="viewPanel" attribute on the div-container tells Exhibit, that this container should act
as a ViewPanel. The ViewPanel contains a single view specified by ex:role="view" in this
very basic example.

FH Technikum Wien Page 12

http://spreadsheets.google.com/feeds/list/o07573463909577017953.6376616843510976610/od6/public/basic?alt=json-in-script
http://spreadsheets.google.com/feeds/list/o07573463909577017953.6376616843510976610/od6/public/basic?alt=json-in-script
http://spreadsheets.google.com/pub?key=pYUqUwUxZGmlikD4CPEt-WA

Usage of Exhibit

 4.1.3 Examining the first Result

The following screen shot shows the resulting, minimal exhibit:

The black box around most of the content represents what we defined as exhibit-wrapper
before. Inside, Exhibit created the following elements:

● a default view (TileView) containing all other Exhibit-specific elements:

● the results count represents the number of items displayed

● the sort controls allow to sort on the attributes specified in the spreadsheet

● the grouping control toggles grouping on the field, primarily sorted on

● the toolbox provides the data of the current exhibit in export formats for copy & paste

● a list of items, ordered as selected within the sort controls

● a default lens, represents each item and lists all attributes available for the item

To summarize, in order to create a minimal exhibit, one has to include the data, include the
Exhibit API, define a ViewPanel and a view.

The source code and the visual result of this step may be examined at
http://stud05.technikum-wien.at/~tw05n126/exhibit/cv/01-minimal-setup.html

The following chapters provide information on using different data sources and how-to extend
the minimal exhibit in functionality.

FH Technikum Wien Page 13

Illustration 4: Screenshot of a minimal exhibit

http://stud05.technikum-wien.at/~tw05n126/exhibit/cv/01-minimal-setup.html

Usage of Exhibit

 4.2 HTML Configuration Options

Exhibit offers a variety of HTML configuration options in order to configure and enhance
elements of an exhibit. This chapter discusses the possible options, divided into the following
sections:

● Include Exhibit API Extensions

● Add & Customize Views

● Add & Customize Facets

● Add & Customize Lenses

● Use Coders, Coordinators, Expressions and Formats

 4.2.1 Include Exhibit API Extensions

Exhibit API extensions are packages of Javascript files, adding extra functionality to Exhibit.
Two common extensions are the Time Extension and the Map Extension, which both add
extra view types.

An Exhibit API extension is included by linking to it's main Javascript file. This step must not
come before including the Exhibit API itself.

For example the Time Extension can be included, using the following HTML statement:

 <script src="http://static.simile.mit.edu/exhibit/extensions-2.0/time/time-
extension.js"></script>

The Time Extension will be used during the next chapter in order to extend the functionality
for the personal CV example exhibit.

FH Technikum Wien Page 14

Usage of Exhibit

 4.2.2 Add & Customize Views

In Exhibit, “views are ways of looking at collections of items” (DALE, 2008a). The minimal
setup included a view, but didn't specify its type, therefore it was defaulted to a Tile View.

Reading the Exhibit for Authors wiki page (DALE, 2008b) leads to the insight, that Exhibit
offers a variety of views besides the default Tile View. Exhibit supports out-of-the-box Tile
Views, Thumbnail Views and Tabular Views. Other views require Exhibit API extensions,
such as the above stated Map View and Timeline View, but also a Timeplot View might be
added via an extension.

For the personal CV use case, the Timeline View and the Tabular View where considered to
be the most appropriate. Luckily, both are well documented at the SIMILE wiki (CAMFIELD,
2008 and PFRED60, 2008). Following the instructions on the stated wiki pages, the minimal
exhibit can be extended:

As the Timeline View requires the Exhibit Time extension, it will be included right after the
Exhibit API inclusion:

<!-- include exhibit time extension -->
<script src="http://static.simile.mit.edu/exhibit/extensions-2.0/time/time-

extension.js" type="text/javascript"></script>

Adding a Timeline View similar to the creation of a default view, but additional parameters
specify it more precisely:

<div ex:role="view"
 ex:viewClass="Timeline"
 ex:start=".from"
 ex:end=".to"
 ex:topBandUnit="year"
 ex:topBandPixelsPerUnit="100"
 ex:bottomBandUnit="decade"
 ex:bottomBandPixelsPerUnit="500"
 ></div>

● the ex:viewClass attribute specifies the type of view to use

● ex:start and ex:start are required to define the time information

● the optional ex:...Unit statements adjust the zoom-factors of the Timeline View

(CAMFIELD, 2008)

The creation of the Tabular View works similar:

<div ex:role="view"
 ex:viewClass="Tabular"
 ex:columns=".from, .to, .type, .label, .place, .position, .field"
 ></div>

● the ex:viewClass attribute specifies the type of view to use

● the ex:columns attribute specifies, which data to display

(PFRED60, 2008)

FH Technikum Wien Page 15

Usage of Exhibit

The examination of the results follows:

Besides already familiar elements like the results count and the toolbox, the following
elements are new:

● a view selection allows to switch between the specified views

● the selected Timeline View, contains a top band and a bottom band, both showing
the items provided by the spreadsheet on a time axis.

● the selected item is a pop up, Exhibit creates, when clicking on an item

● again, the selected item is represented by a default lens

FH Technikum Wien Page 16

Illustration 5: Screenshot of an exhibit, containing multiple views and an active Timeline View

Usage of Exhibit

Selecting the Tabular View from the view selection switches the view and produces the
following screen shot:

Note, that the table generated by Exhibit contains sortable columns.

The source code and the visual result of this step may be examined at
http://stud05.technikum-wien.at/~tw05n126/exhibit/cv/02-adding-views.html

Further information on views is provided within David Huynh's thesis (HUYNH, 2007a, p.63).

FH Technikum Wien Page 17

Illustration 6: Screenshot of an exhibit, containing multiple views and an active Tabular View

http://stud05.technikum-wien.at/~tw05n126/exhibit/cv/02-adding-views.html

Usage of Exhibit

 4.2.3 Add & Customize Facets

“A facet is a component whose purpose is to filter a collection’s root set down to a filtered set”
(HUYNH, 2007a, p.62). The best way to understand facets is using them. After the following
code definitions, a screen shot containing facets and further explanation is provided.

At the beginning of the exhibit-wrapper div, a facets-wrapper div is introduced:

<div id="facets-wrapper">
...
</div>

The facets-wrapper is formatted using the following CSS rule:

#facets-wrapper { width: 15em; float: left; font-size: 0.9em; margin-right:
0.5em; }

Now, facets can be added to the facets-wrapper. The following code will produce a simple
Text Search Facet, which allows the user to search over all attributes, available:

<div ex:role="facet" ex:facetClass="TextSearch" ex:facetLabel="Search"></div>

It would also be possible, to specify an expression, the facet should filter on. We define this
and other settings for the following List Facet:

<div ex:role="facet" ex:expression=".type" ex:facetLabel="Type"
ex:sortMode="value" ex:selection="work;study;volunteer;freelance"
ex:height="130"></div>

Note the following parameters:

● the ex:role attribute classifies the block as a facet

● no ex:type attribute was specified, therefore Exhibit will use List Facet as the default
facet type

● the ex:expression attribute assigns the List Facet to filter on the type attribute of the
CV data

● the ex:facetLabel attribute overrides the default facet label

● the ex:sortMode attribute overrides the default sortMode from count to value

● the ex:selection attribute provides an initial selection for the facet

● the ex:height attribute sets the facets height

Two more List Facets provide filtering on the two more attributes of the CV data:

<div ex:role="facet" ex:expression=".label" ex:facetLabel="Place"
ex:sortMode="count"></div>

<div ex:role="facet" ex:expression=".field" ex:facetLabel="Field"
ex:sortMode="count" ex:showMissing="false"></div>

The only new attribute introduced here is ex:showMissing – it will prevent the facet from
adding an entry for items which do not provide any value for the expression, the facet filters
on.

FH Technikum Wien Page 18

Usage of Exhibit

This is the resulting screen shot:

The following elements are new:

● the Text Search Facet at the top of the left column provides full-text filtering
functionality

● the List Facet named “Type” has four selected elements (these have been selected
automatically by the selection parameter in the code)

● the results count additionally shows, that the items in the list have been filtered (due
to the selection in the facets at the left)

● all List Facet items provide a preview count, which tells the user the number of items
to expect when clicking on this particular item

The source code and the visual result of this step may be examined at
http://stud05.technikum-wien.at/~tw05n126/exhibit/cv/03-adding-facets.html

Further information on facets may be found in David Huynh's (2007a, p. 62) thesis.

FH Technikum Wien Page 19

Illustration 7: Screenshot of an exhibit, containing multiple views and facets

http://stud05.technikum-wien.at/~tw05n126/exhibit/cv/03-adding-facets.html

Usage of Exhibit

 4.2.4 Add & Customize Lenses

“Lenses are ways of formatting individual items” (DALE, 2008a). This means, that a lens may
be used configure the visual appearance of single items of the personal CV.

Similar to the creation of facets, the element to wrap a lens receives the appropriate ex:role
attribute:

<div ex:role="lens" style="display: none" class="lens-wrapper">
...
</div>

The ex:content attribute will insert the specified content into the element. Note that the
content has to be empty, otherwise it doesn't work (LDD, 2007).

<div class="type" ex:content=".type"></div>

HTML attributes may be generated, using the ex:*-content attribute. In this example
ex:href-content sets the href attribute for the HTML link to the item's link property:

<div class="label"><a ex:href-content=".link" ex:content=".label"></div>

Control logic might be added using ex:if-exists, ex:if or ex:select elements. The
following code snipped adds the hours of work to the time information only if it exists, using
the ex:if-exists attribute:

<div class="time">
from
to

(hours)

</div>

An example of embedding function within the expressions-aware ex:content attribute:

<div class="place" ex:content="concat('place: ',.place)"></div>

Two further lines of code add extra information to the lens template:

<div class="field" ex:content=".field"></div>
<div ex:if-exists=".location" ex:content=".location"></div>

Additional CSS code adjusts the representation of the lenses:

.lens-wrapper { width: 25em; }

.lens-wrapper .type { float: right; color: #888; }

.lens-wrapper .time { font-style: italic; font-size: 0.8em; }

FH Technikum Wien Page 20

Usage of Exhibit

The added lens produces the following screen shot, when an item has been clicked:

Notice the expanded, custom lens. In comparison to the default lens, first seen in 4.1.3
Examining the first Result, this custom lens doesn't simply list all attributes, available for the
specific item. It displays the item in a the way, the lens template in the code specifies.

It is also possible, to add item type-specific lens templates, using the ex:itemTypes attribute:

<!-- website-launch specific lens -->
<div ex:role="lens" style="display: none" class="lens-wrapper"

ex:itemTypes="website-launch">
<div class="type" ex:content=".type"></div>
<div class="label"><a ex:href-subcontent="{{.link}}?from=CV"

ex:content=".label"></div>
<div class="time">launched </div>
<div class="place" ex:content="concat('for: ',.place)"></div>

</div>

This defines a custom lens template for items having the type website-launch only. Items of
all other types will use the more generic one without the ex:itemTypes parameter, if available
or otherwise a default lens.

Also note the ex:href-subcontent attribute. Its advantage over ex:href-content is the
possibility to create dynamic URLs because it may contain expressions which have to be
encapsulated using a {{ }} syntax (KARGER, 2007).

The source code and the visual result of this step may be examined at
http://stud05.technikum-wien.at/~tw05n126/exhibit/cv/04-adding-lenses.html

Further information on lenses is available in David Huynh's (2007a, p.63) thesis.

FH Technikum Wien Page 21

Illustration 8: Screenshot of an exhibit, containing multiple views, facets and lenses

http://stud05.technikum-wien.at/~tw05n126/exhibit/cv/03-adding-facets.html

Usage of Exhibit

 4.2.5 Use Coders, Coordinators, Expressions and Formats

Besides the stated methods of customizing an exhibit by adding and customizing views,
facets and lenses, Exhibit offers even more features:

● coders “translate a piece of information to some visual feature”.
(ANDRISI, 2008) More information: http://simile.mit.edu/wiki/Exhibit/2.0/Coders

● coordinators “synchronize selection and highlight among several views”.
(HUYNH, 2007b) More information: http://simile.mit.edu/wiki/Exhibit/2.0/Coordinators

● expressions “make it convenient to access its [Exhibit's] graph-based data model” .
(HUYNH, 2008a, p.58) More information: http://simile.mit.edu/wiki/Exhibit/Expressions

● formats “modify the ways values of various value types (date, url, image, etc.) are
rendered”. (SABERHAGEN427, 2008) More information:
http://simile.mit.edu/wiki/Exhibit/2.0/Formats

Their explanation goes beyond the scope of thesis, but the interested reader is encouraged
to refer to chapter 5.1 Sources of Information.

 4.3 Data Options

The article “Creating, Importing, and Managing Data” at Exhibit's SIMILE wiki section states:

“Exhibit's database natively understands data in its own format (a JSON format), but there
are a number of ways to use data in other formats”. (DASJO, 2008)

The following listing summarizes the possibilities stated and explained in detail at the wiki
article:

● Manual Creation and Management of JSON Data

● Manual Conversion to JSON using Babel

○ BibText, Excel, JPEG, N3, RDF/XML, Tab-Separated Values

● Live Conversion to JSON using Importers

○ Babel-based Importer (BibTex, Excel, RDF/XML & N3)

○ Google Spreadsheet Importer

○ RDFa Importer

It is notable, that as all features of Exhibit, importers are free to extend. For example the
RDFa Importer was contributed by an Exhibit user named Keith Alexander.

(DASJO, 2008)

FH Technikum Wien Page 22

http://simile.mit.edu/wiki/Exhibit/2.0/Formats
http://simile.mit.edu/wiki/Exhibit/Expressions
http://simile.mit.edu/wiki/Exhibit/2.0/Coordinators
http://simile.mit.edu/wiki/Exhibit/2.0/Coders

Technical Documentation of Exhibit

 5 Technical Documentation of Exhibit
The technical documentation of Exhibit includes a listing of sources of information, available
on Exhibit. It further discusses the topic API documentation and presents the two prototypes
“Exhibit Code Documentation” and “Exhibit SVN History”, both realized using Exhibit.

 5.1 Sources of Information
Besides the information, provided within this thesis, these sources provide developers with
useful documentation on Exhibit:

● The official web site of Exhibit is http://simile.mit.edu/exhibit/

● The Exhibit wiki is located at http://simile.mit.edu/wiki/Exhibit and open to
contributions. It contains numerous tutorials on the usage of Exhibit, but also gives
technical background information.

● The SIMILE Widgets Google Group is the official discussion forum for Exhibit-
related questions and located at http://groups.google.com/group/simile-widgets.
David Huynh, Exhibit's core developer regularly answers questions in this group.

● The MIT Simile Web Widgets Google Code Project hosts Exhibit's source code and
may be accessed via http://code.google.com/p/simile-widgets/. Note, that at the time
of research, documentation on Exhibit hasn't been moved over to the Google Code
project from the Exhibit wiki at SIMILE.

● The Exhibit API is available remotely as a free service via http://static.simile.mit.edu/
exhibit/, where both stable and development versions are provided.

● The former Exhibit repository, located at http://simile.mit.edu/repository/exhibit is
outdated and has been moved to the MIT Simile Web Widgets Google Code
Project.

The following publications on Exhibit are available:

● User Interfaces Supporting Casual Data-Centric Interactions on the Web is
David Huynh's doctoral thesis providing in-depth information on Exhibit and available
from http://davidhuynh.net/media/thesis/thesis.php

● Exhibit: Lightweight Structured Data Publishing was written by David Huynh,
Robert Miller and David Karger and is the first paper, published on Exhibit. It is
available on
http://davidhuynh.net/media/papers/2007/www2007-exhibit.pdf

Example exhibits can be found at the following web addresses:

● The official web site of Exhibit: http://simile.mit.edu/exhibit/

● The examples page of the Exhibit wiki: http://simile.mit.edu/wiki/Exhibit/Examples

● The example directory of the Exhibit source code:
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/site/examples/

● David Huynh's project folder http://people.csail.mit.edu/dfhuynh/projects/

FH Technikum Wien Page 23

http://people.csail.mit.edu/dfhuynh/projects/
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/site/examples/
http://simile.mit.edu/wiki/Exhibit/Examples
http://simile.mit.edu/exhibit/
http://davidhuynh.net/media/papers/2007/www2007-exhibit.pdf
http://davidhuynh.net/media/thesis/thesis.php
http://simile.mit.edu/repository/exhibit
http://static.simile.mit.edu/exhibit/
http://static.simile.mit.edu/exhibit/
http://code.google.com/p/simile-widgets/
http://groups.google.com/group/simile-widgets
http://simile.mit.edu/wiki/Exhibit
http://simile.mit.edu/exhibit/

Technical Documentation of Exhibit

 5.2 API Documentation
Popular JavaScript frameworks like Prototype and Dojo provide API documentation
(Prototype Core Team, 2008 and The Dojo Foundation, 2008). Research turned out, that a
documentation generator for JavaScript exists – JsDoc toolkit (MICMATH, 2008). The main
purpose of JsDoc toolkit is to generate documentation from parsing JavaScript files for inline
comments. This is comparable to what the more popular Javadoc tool does for Java source
code (Sun Microsystems, Inc., 2008).

Currently, most of the source code files of Exhibit don't contain any or contain very little
documentation. A test-run of the JsDoc toolkit on Exhibit's source code1 produced an
unusable result of very low quality. The toolkit recognized hardly any of the existent classes,
which Exhibit consists of.

 5.3 “Exhibit Code Documentation” exhibit
To accomplish the target “Extend documentation, available on Exhibit”, an effort on creating
an “Exhibit Code Documentation” has been made. As chapter 5.2 API Documentation
explains, at the moment Exhibit's code is fairly documented and there doesn't exist a proven
method to generate documentation from the code itself.

In order to propose a possible documentation, a prototype was created using Exhibit on its
own: the “Exhibit Code Documentation” exhibit. Its target is to provide developers a reference
on the basic structure of Exhibit's code base. For this purpose, a Google Spreadsheet was
created. The spreadsheet contains a row for every folder and file, the Exhibit source code
consists of. Exhibit interprets each row as an item. Items are described by their attributes,
which are the corresponding columns in the Spreadsheet.

The following columns where specified:

● The type column defines the type of the item

○ 3.3 Architecture provides an overview of the components, Exhibit consists of.
These components where matched to the types.

○ The type “component” refers to a folder, containing multiple components. For
example the UI component contains sub-components like view, facet and lens.

○ The type “extension” refers to Exhibit extensions, as described in chapter 4.2.1
Include Exhibit API Extensions.

○ The type “folder” refers to a folder of less significance, compared to folders of the
component type. For example the Map Extension contains a folder named
“scripts”, where the Map View is defined. The “scripts” folder is just a structural
folder, but not a component.

● The id column provides a unique identifier for the item

○ The scripts of Exhibit's source code are accessible via “http://simile-
widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts”. The id is the
relative path below this scripts folder. For example, the UI component is located at
http://simile- widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/ui ,
so its id is “/ui”.

○ Extensions are located within a different folder, than the Exhibit's “core” source
code: http://simile-
widgets.googlecode.com/svn/exhibit/trunk/src/webapp/extensions/. This prevents
them from being mapped using the relative id approach stated before. Two
options where considered, to deal with this issue: 1) Raise the base folder for
calculating the ids up to http://simile-

1 http://simile-widgets.googlecode.com/svn/exhibit/trunk/src , version 1383

FH Technikum Wien Page 24

http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/extensions/
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/extensions/
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/ui
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/ui
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src

Technical Documentation of Exhibit

widgets.googlecode.com/svn/exhibit/trunk/src/webapp/. This means consistent ids
for all items, but means longer ids. 2) Map Extensions to the virtual base id
“/extensions”. While this approach keeps the ids short, it's draw back is, that ids
cannot be consistently mapped to their full path. For example, the Timeline
Extension would be mapped from “/extensions/time” to the following, invalid path:
http://simile-
widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/extensions/time.
The second option, the implementation of a separate id-mapping for Extension-
related items was chosen.

● The parent column refers to the id of the items parent item.

● The label column is a human-readable representer for the item. In general, this refers
to the class name specified within a component's source, without the “Exhibit” name
space. For example, the source file of the ColorCoder, located at http://simile-
widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/ui/coders/color-
coder.js, states “Exhibit.ColorCoder” in its initial source comment.

● The description column contains a description of the item's purpose

● The uri column refers to SVN path to the item's source code. The generation of the
uri is described in the explanation of the id column above.

● The wiki-link column contains zero, one or multiple references to pages at the Exhibit
wiki which contain documentation on the item.

The combination of information provided within David Huynh's thesis and study both of
Exhibit's source code and the wiki, all user interface related folders and files where
transferred to the Google Spreadsheet and documented.

Next, an exhibit based on the Google Spreadsheet was created, following the procedures
described in chapter 4 Usage of Exhibit.

A separate JSON-file configures the non-text valueTypes of the columns, described above, to
ensure that Exhibit will handle them properly:

 {
 properties: {
 "parent": {
 valueType: "item"
 },
 "uri": {
 valueType: "url"
 },
 "wiki-link": {
 valueType: "url"
 }
 }
}

FH Technikum Wien Page 25

http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/ui/coders/color-coder.js
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/ui/coders/color-coder.js
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/ui/coders/color-coder.js
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/extensions/time
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/api/scripts/extensions/time
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/
http://simile-widgets.googlecode.com/svn/exhibit/trunk/src/webapp/

Technical Documentation of Exhibit

The following screen shot shows the visual appearance of the created “Exhibit Code Documentation” exhibit:

The reader may find one page element, not described before: The facet at the left, with the title “File Structure”, is a
Hierarchical Facet. It allows to browse hierarchical data, which is provided by the parent column of the Google Spreadsheet, as
described before.

To summarize, the “Exhibit Code Documentation” exhibit allows a user to interactively browse the Exhibit's source code,
supported by the facets which allow to filter on file structure hierarchy and meta-data like the item types. It also provides access
to further information as an items source code at the SVN repository and, if existent, information at the Exhibit wiki.

The source code and the visual result of the “Exhibit Code Documentation” exhibit may be examined at
http://stud05.technikum-wien.at/~tw05n126/exhibit/code-doc/

FH Technikum Wien Page 26

Illustration 9: Screenshot of the "Exhibit Code Documentation" exhibit

http://stud05.technikum-wien.at/~tw05n126/exhibit/code-doc/

Technical Documentation of Exhibit

 5.4 “Exhibit SVN History” exhibit

Comparable to the “Exhibit Code Documentation” exhibit, described previously in chapter
5.3, while writing this thesis, an exhibit was created in order visualize Exhibit's SVN activity.
The aim of the “Exhibit SVN History” exhibit is to visualize activity on Exhibit's source code by
transforming SVN log data to a Exhibit Timeline View. Using Exhibit to present the data
allows advanced features like facets for filtering.

The following Subversion command was executed on the Exhibit source in order to generate
an export of Exhibit's SVN log in XML format:

svn log -v --xml > log.xml

The resulting log.xml file contains a large number of logentry items. One of them is listed in
the following example:

<logentry revision="1209">
 <author>dfhuynh</author>
 <date>2007-11-19T14:05:38.214615Z</date>
 <paths>
 <path action="D">/exhibit/branches/2.0</path>
 <path copyfrom-path="/exhibit/branches/2.0" copyfrom-rev="1208"

action="A">/exhibit/trunk</path>
 </paths>
 <msg>
 Moving branches/2.0 to trunk for real this time, hopefully.
 </msg>
</logentry>

The semantics of the data are sufficient to create a meaningful exhibit from it. The date
attribute of every logentry allows to display SVN activity within a Timeline View. The author
attribute provides information on who committed the changes and the paths list allows to
understand, which files have been modified. The msg contains the comment, the author
provided when committing the change.

Transforming the Exhibit SVN log data, so that Exhibit would be able to read it, was the most
challenging task. As described previously in chapter 4.3 Data Options, several importers exist
to import various file formats. Unfortunately, at the time of research, there didn't exist an
importer which could import the xml data, describes above. The RDF/XML Importer doesn't
work in this case, because the xml data doesn't contain name space declarations, which are
required by the importer. Writing a custom importer of course was an option, but out of scope
of this thesis. As a workaround, the XML data was transformed to a spreadsheet, using
Microsoft Excel. The spreadsheet data then was copied to a Google Spreadsheet, although
the performance of Google Docs was weak, due to the large amount of data.

The imported data contains all SVN changes related to Exhibit up to revision 1360, but the
total number of items is 4002. This is due to a flattening process, Microsoft Excel applies
when important hierarchical XML data. For example the above stated example contains a
single logentry, but when imported two rows are generated, because it contains two path
nodes.

FH Technikum Wien Page 27

Technical Documentation of Exhibit

The “Exhibit SVN History” exhibit produces the following visual output:

Note, that besides already familiar facets and the Timeline View, this exhibit displays its
items in a “color coded” way. The Timeline View configuration contains a setting, which
forces the view to display items colored according to their author attribute and also
generates a legend, visible at the screen shots bottom. This is the responsible configuration:

ex:colorKey=".author"

The “Exhibit SVN History” exhibit provides the interested user with a powerful tool which
helps him analyze activities on Exhibit's source code.

FH Technikum Wien Page 28

Illustration 10: Screenshot of the "Exhibit SVN History" exhibit

Real-World Use Cases based on Exhibit

 6 Real-World Use Cases based on Exhibit

This chapter shows practical use cases based on Exhibit.

During the writing process of this thesis, two exhibits have been created, which are both
described within chapter 5 Technical Documentation of Exhibit.

Besides the already discussed exhibits, the following use cases show that it is possible, to
use Exhibit in dynamic web applications:

● Auslandsdienst WebNeu is a dynamic web application based on Plone, an open
source content management system (Plone Foundation, 2008)

● OpenEvents is a dynamic web application developed with Java Servlet and JSP
technologies

 6.1 Auslandsdienst WebNeu

“Auslandsdienst” refers to german name of the “Austrian Service Abroad”, a non-profit
initiative, founded 1998 by Andreas Maislinger. The organization provides positions for an
alternative Austrian national service all over the world. (Wikipedia, 2008).

“WebNeu” is a project, initiated by members of the Austrian Service Abroad in order to create
a dynamic web application which will replace the current, static web site of the organization,
but hasn't been released, yet (Österreichischer Auslandsdienst, 2008). WebNeu is built upon
Plone which is based on the open source application server Zope (Zope Corporation, 2008).
Exhibit is used in order to visualize data on a Google Map or in a Timeline View. This chapter
explains, how WebNeu's exhibits have been realized.

A way to display content in Plone since version 3 are Zope 3 browser views. Using this
approach, a View Class provides data which a Template uses to generate output. (ASPELI,
2008)

More information on Zope 3 Browser views can be found at
http://plone.org/documentation/tutorial/customization-for-developers/zope-3-browser-views

The following Zope Configuration Markup Language (ZCML – RICHTER, 2008) declaration
defines a browser view:

 <browser:page
 for="Products.AuslandsdienstBase.content.interfaces.IOrganisation"
 name="organisation-view"
 class="Products.AuslandsdienstBase.browser.OrganisationView.OrganisationVi

ew"
 template="templates/organisation-view.pt"
 />

● The for attribute assigns the browser view to objects of the type Organisation
● The name attribute defines the path at which the browser view will be accessible

● The class attribute specifies the View Class which provides data for the template

● The template attribute defines the Template which will be used to render the object

FH Technikum Wien Page 29

http://plone.org/documentation/tutorial/customization-for-developers/zope-3-browser-views

Real-World Use Cases based on Exhibit

 6.1.1 Provide data using View Classes
WebNeu's View Classes where extended to provide data in JSON format for Exhibit. This
was accomplished by using simplejson, a JSON encoder/decoder for Python (IPPOLITO,
2008a). simplejson is able to encode basic Python object hierarchies out of the box. Creating
an extended JSONEncoder allows to encode complex Python object hierarchies, containing
custom types (IPPOLITO, 2008b). An AuslandsdienstEncoder was written in order to encode
WebNeu-specific Python objects.

The following code represents the definition of the AuslandsdienstEncoder for the
Organisation type, which defines an organizational unit within the Austrian Service Abroad:

class AuslandsdienstEncoder(simplejson.JSONEncoder):
 def default(self, obj):

 # Organisation type-specific encoding
 if isinstance(obj, Organisation):
 return {"label" : obj.Title(),
 "id" : obj.getId(),
 "type" : "Organisation",
 "groupMembers" : obj.getGroupMembers(),
 "latitude" : obj.getGeoLocation()[0],
 "longitude" : obj.getGeoLocation()[1],
 "geoLocation" : obj.getGeoLocation() }

 # ... other WebNeu type-specific specific encodings ...

 return simplejson.JSONEncoder.default(self, obj)

The AuslandsdienstEncoder checks by using the isinstance method, if obj (the object to
encode) is of a known type as the Organisation type, specified in this shortened example. If
the type of the object matches, the type-specific encoding function returns a Python tuple
containing the information to encode. simplejson is able to encode the result, because it is a
basic Python object hierarchy. The same functionality has been implemented for various
other WebNeu-specific content types.

A View Class function exhibitJSON was written to convert a list of objects into Exhibit's JSON
format:

 def exhibitJSON(self, items):
 """
 serializes item tuples to JSON using simplejson
 JSON structure:

http://simile.mit.edu/wiki/Exhibit/Template/JSON_Data_File
 """
 tuple = {"items" : items}
 return simplejson.dumps(tuple, cls=AuslandsdienstEncoder)

First, the items list of objects to encode for Exhibit is packed into a tuple with a key named
“items” in order to conform with the JSON Data File Template (HUYNH, 2007c). The function
returns the JSON encoding of the tuple using the simplejson.dumps function. The optional
cls parameter forces the function to use the custom AuslandsdienstEncoder, specified
before.

At this point of time, it is possible to provide data in a way, Exhibit can parse.

FH Technikum Wien Page 30

Real-World Use Cases based on Exhibit

 6.1.2 Integrate Exhibit using the InlineImporter
Normally, Exhibit loads its data from an URL. In this case it was preferred to render the JSON
code into the HTML page itself. Brian Rossmaier (2007) found a way to realize this using an
InlineImporter. The InlineImporter allows to load data directly into Exhibit by using several
JavaScript statements. An additional method for the Organisation View Class “exhibitImport”
was created:

 def exhibitImport(self):
 """
 returns javascript command for script tag to load exhibitJSON string
 """
 data = self.exhibitJSON(self.subOrganisations() +
 self.positions() +
 self.jobs() +
 [job.getServant() for job in self.jobs()])
 return "Exhibit.InlineImporter.userdata=(" + data + ");";

The function exhibitImport uses the previously defined exhibitJSON function to encode a list
of all relevant objects for the Organisation into the data variable. For example, all sub
organisations are accessed by the self.subOrganisations() getter. The function returns a
JavaScript command containing the encoded JSON string which will be used in template,
discussed in the following chapter.

 6.1.3 Generate HTML Code using Templates
As specified in the Zope Configuration Markup Language (ZCML) declaration for the browser
view at the beginning of this chapter, the browser view has been associated with a Template
which will render the Organisation object into HTML code.

To set up Exhibit and the InlineImporter, a METAL macro block for the JavaScript-related fill-
slot is defined (DE VITIS, 2008). METAL is a way to define macros for Zope Templates
(SIMON, 2008).

<metal:block fill-slot="javascript_head_slot">
...
</metal:block>

Plone renders code within this block into the HTML head. First, the Exhibit API and the Time
and the Map Extension are referenced, similar to the procedure described in chapter 4.1.2
Creating the Presentation. The following line tells Exhibit, that an InlineImporter will be used:

<!-- load exhibit data from inline javascript -->
<link type="inline" rel="exhibit/data" />

Further, several lines of JavaScript code initialize the InlineImporter:

<script>
Exhibit.InlineImporter = { };
Exhibit.importers["inline"] = Exhibit.InlineImporter;
Exhibit.InlineImporter.load = function(link, database, cont) {
Exhibit.UI.showBusyIndicator();
database.loadData(Exhibit.InlineImporter.userdata);
Exhibit.UI.hideBusyIndicator();
if (cont) cont();

};
</script>

FH Technikum Wien Page 31

Real-World Use Cases based on Exhibit

This is the most important statement:

<!-- exhibit inline data load operation including json data string comes from
view class -->

<script tal:content="view/exhibitImport">
Exhibit.InlineImporter.userdata=(JSONSTRING);

</script>

Using the Template Attribute Language Expression Syntax (TALES) tal:content directive ,
the contents of the script tag will be replaced with the result of the exhibitImport function of
the View Class. TALES is an expression language, used to write Templates for Plone and
Zope (EVAN, 2008).

More information on Templates can be found at
http://plone.org/documentation/tutorial/zpt

 6.2 OpenEvents

Target of the project OpenEvents is to develop an open [...] platform for registration and
search of events [...]. The project OpenEvents is developed as a part of the ebSemantics
project and aims to cross-link event data in the semantic-web-based e-commerce. [...] The
project is supported by the Internet Privatstiftung Austria.

(Smart Information Systems, 2008)

Together with Svetlana Hollerer and Markus Klausz, fundamental parts of the OpenEvents
platform have been developed at Smart Information Systems. As defined in the specification,
the platform is realized using Java Servlet technologies in conjunction with Java Server
Pages (JSP) and implements the Model-View-Controller (MVC) pattern.

● Model – A data interface allows to access event data by providing Java Beans

● View – JSPs generate HTML code for the user's browser

● Controller – Java Servlets manage the web application's control flow

 (HOLLERER et al, 2008)

OpenEvents uses Exhibit to visualize event data. The integration of the Exhibit framework
into OpenEvents was realized by using InlineImporter approach. It has already been
discussed for the Auslandsdienst WebNeu project (see 6.1.2 Integrate Exhibit using the
InlineImporter).

FH Technikum Wien Page 32

http://plone.org/documentation/tutorial/zpt

Real-World Use Cases based on Exhibit

The following screen shot shows the main page of the OpenEvents platform, containing
Exhibit elements like a Maps View and a Timeline View.

In comparison to the Auslandsdienst WebNeu project, which uses Python code, OpenEvents
is developed using Java technologies. To transform event data, encapsulated by Java Beans
into Exhibit's preferred JSON format, the jsonmarshaller (PEREZ, 2008a) was used. It allows
to control the encoding by applying jsonmarshaller-specific annotations on Java Classes and
their variables or getters (PEREZ, 2008b).

FH Technikum Wien Page 33

Illustration 11: Screenshot of the main page of the OpenEvents plattform

Real-World Use Cases based on Exhibit

The search page of the OpenEvents platform heavily uses Exhibit:

This page contains a new Exhibit feature, a coordinator. Its purpose is to synchronize
selection (see the coordinated selection mark) and highlight among several views (see the
coordinated views mark) (HUYNH, 2007d). Illustration 11 contains two views, a Map View
and a Timeline View. To coordinate the two views, the following coordinator is defined:

<div ex:role="coordinator" id="event"></div>

Each view is configured to use the event coordinator using the ex:selectCoordinator
attribute:

ex:selectCoordinator="event"

Clicking on an event in one of the both views doesn't only display the lens for the clicked
event within the current view, but will also trigger the event coordinator. The coordinator
forces the other view to display the event and its lens within the view.

In the example screen shot of Illustration 11, both views display the same event.

FH Technikum Wien Page 34

Illustration 12: Screenshot of the search page of the OpenEvents plattform

Conclusion & Discussion

 7 Conclusion & Discussion

“Creating interactive web apges using the Exhibit Framework” introduced Exhibit, a
JavaScript framework enabling publishers to create data-centric and interactive web pages.

A detailed tutorial showed how-to create an interactive personal CV step-by-step. Interested
users may follow the example to create for example their own personal CV or any other data-
driven exhibit. Every single step of the creation process is documented and also refers to
further documentation, available on the web.

References to existing technical documentation on the Exhibit framework have been
provided and two real-world use cases demonstrated, that Exhibit also works well in
database-driven three-tier web applications. Due to the limited scope of this thesis, some
advanced components of the Exhibit framework could not be discussed in detail.

In the sequent, concluding statements, I'd like to analyze Exhibit's community, documentation
and performance aspects and provide suggestions for the future.

 7.1 Community

David Huynh's efforts in supporting the community by continuously answering questions and
providing solutions and fixes to found bugs are outstanding. He nearly answers any question,
asked on the newsgroup, which keeps the users' motivation up and also motivates others to
participate with the community around Exhibit.

Several developers have contributed additional functionality to the Exhibit code base. The
“Exhibit SVN History” exhibit shows, that about 16 developers contributed additional code or
bug-fixes.

Exhibit's community very much relies on David Huynh's presence. This works well, because
at the moment he is available. But as David Huynh stated on the newsgroup, he might not be
able to dedicate as much time to Exhibit development as today in the future (HUYNH,
2008a). It is very critical for Exhibit to keep its community lively. I think, the most important
thing is, that the code base is documented well, so that more developers can be motivated to
maintain and extend it. This leads to the next discussion point, documentation:

 7.2 Documentation

Dealing with the topic “Technical Documentation” showed, that there exists a considerable
amount of documentation, available both for users and developers, interested in Exhibit. On
the other hand, some features are not or just rudimentary documented and the Exhibit wiki
also contains several outdated documentation entries. This of course is due to the fact, that
Exhibit is quickly developing.

David Huynh's recent comment to the SIMILE Widgets Google Group states the current state
in a very good way:

“It's unfortunate that I'm the only full-time developer on Exhibit, Babel, Timeline, Seek,
Potluck, Backstage. Sometimes I also provide technical support for Solvent, Piggy Bank,
Longwell, and chimed in on Crowbar. I also have other duties and interests. And
documentation isn't a very appealing task compared to research and coding ... The hope is
that our enthusiastic users might spare a minute to help editing our wiki and add tips for
other users.

And this hope has worked out in a number of cases. Tom Woodward and Brian Croxall have

FH Technikum Wien Page 35

Conclusion & Discussion

made excellent tutorials on Exhibit and Timeline; we're very grateful! And since our code
move to Google Code we have gotten a number of code contributions, too. That's very
exciting.

Another hope is to find funding for a real full-time developer, one who doesn't get distracted
with wild research tangents like I do. :-) “

(HUYNH, 2008b)

This of course underlines that Exhibit is facing a challenge to find contributors supporting the
documentation process. But it also states, that several community members have already
provided various contributions.

A consistent and up-to-date API documentation for Exhibit would help a lot. A detailed
analysis of the issues, preventing the generation of proper API documentation for Exhibit
using JsDoc toolkit was out of this thesis' scope. But it can be assumed, that structural
changes to Exhibit's source code could enable JsDoc toolkit to provide an API
documentation. I think, the current code base is well structured, so the required, structural
changes for the JsDoc toolkit could be applied straight-forward. On the other hand, I can't
estimate the exact work effort this step would require. Also it has to be considered, that the
Exhibit code base is continuously evolving, so such changes would need high-quality
coordination of the developers. Adding code documentation itself would be a necessary,
sequent step in order to add meanings to such an API documentation.

If more developers start to work continuously on Exhibit, the use of an Issue Tracker would
be crucial, too. Currently, the official issue tracker, hosted at the SIMILE website, contains 44
open issues, but they are not processed: http://simile.mit.edu/issues/browse/EXHIBIT. To
integrate other developers more easily, I propose to move over to the SIMILE Widgets
Google Code Issue tracker: http://code.google.com/p/simile-widgets/issues/list

 7.3 Performance

David Huynh (2007a, p.70ff) evaluated Exhibit's performance as a part of his thesis. The
results indicate, that Exhibit's client-side approach works in a common browser environment.
Due to the fact, that all data has to be transferred to the client and processed by it, Exhibit is
limited in terms of scalability.

In the current test-setup of OpenEvents, the platform displays up to 350 events. If
OpenEvents generates an exhibit, containing all the 350 events, the facet filters become
quite slow (2-3 seconds to filter on an expression, 4-5 to release the filter again). Also initial
load time high, because the browser has to fetch a lot of JavaScript data, especially if Exhibit
API extensions are used. It has to be states, that Exhibit already optimizes its JavaScripts by
bundling several source file into one and renaming local variables to shorter names.

To overcome performance issues for huge data sets, David Huynh already started another
project, Backstage. Backstage is the codename for a prototype that extends Exhibit in “out-
sourcing” data to a server-side component (HUYNH, 2007e). The most recent example,
available is a “quick attempt at crawling the (publicly accessible) exhibits and showing their
data in a Backstage installation” (HUYNH, 2008c):
http://people.csail.mit.edu/dfhuynh/misc/backstage-demo-the-ex.html

FH Technikum Wien Page 36

http://people.csail.mit.edu/dfhuynh/misc/backstage-demo-the-ex.html
http://code.google.com/p/simile-widgets/issues/list
http://simile.mit.edu/issues/browse/EXHIBIT

Listings

 8 Listings

 8.1 List of Illustrations

Illustration 1: Exhibit web site hosted by SIMILE, showing two example exhibits...................................8
Illustration 2: Exhibit's architecture (HUYNH, 2007a, p. 69)..10
Illustration 3: Google Spreadsheet data for the personal CV, abbreviated..11
Illustration 4: Screenshot of a minimal exhibit...13
Illustration 5: Screenshot of an exhibit, containing multiple views and an active Timeline View...........16
Illustration 6: Screenshot of an exhibit, containing multiple views and an active Tabular View.............17
Illustration 7: Screenshot of an exhibit, containing multiple views and facets.......................................19
Illustration 8: Screenshot of an exhibit, containing multiple views, facets and lenses...........................21
Illustration 9: Screenshot of the "Exhibit Code Documentation" exhibit..26
Illustration 10: Screenshot of the "Exhibit SVN History" exhibit..28
Illustration 11: Screenshot of the main page of the OpenEvents plattform..33
Illustration 12: Screenshot of the search page of the OpenEvents plattform..34

 8.2 List of References
Papers:

● HUYNH D. F., 2007. User Interfaces Supporting Casual Data-Centric Interactions on the Web [Online].
Massachusetts Institute of Technology.
Available from: http://davidhuynh.net/media/thesis/thesis.php [cited 14 May 2008]

● HUYNH D. F. KARGER D. R. MILLER R. C., 2007. Exhibit: Lightweight Structured Data Publishing
[Online]. MIT Computer Science and Artificial Intelligence Laboratory.
Available from: http://davidhuynh.net/media/papers/2007/www2007-exhibit.pdf [cited 14 May 2008]

Web Sites:

● World Wide Web Consortium, 2008, World Wide Web Consortium – Web Standards [Online]. World
Wide Web Consortium.
Available from: http://www.w3.org/ [Accessed 31 May 2008].

● SIMILE Project, 2008, SIMILE Project [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/ [Accessed 31 May 2008].

● STEFANO, 27 February 2007, SIMILE:About [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/wiki/SIMILE:About [Accessed 31 May 2008].

● World Wide Web Consortium, 2008, W3C Semantic Web Activity [Online]. World Wide Web Consortium.
Available from: http://www.w3.org/2001/sw/ [Accessed 31 May 2008].

● HUYNH, D., 20 September 2006, Exhibit [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/mediawiki/index.php?title=Exhibit&oldid=2533 [Accessed 31 May
2008].

● Massachusetts Institute of Technology. 2008, All Articles with prefix Exhibit [Online].
Available from: http://simile.mit.edu/mediawiki/index.php?title=Special
%3APrefixindex&from=exhibit&namespace=0 [Accessed 31 May 2008]

● Massachusetts Institute of Technology. 2008, Exhibit/2.0 – History [Online]. Massachusetts Institute of
Technology.
Available from: http://simile.mit.edu/mediawiki/index.php?title=Exhibit/2.0&action=history [Accessed 31
May 2008]

● Massachusetts Institute of Technology. 2008, Exhibit/2.0 [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/exhibit [Accessed 31 May 2008]

● DUOSHUTE, 2 May 2008, Exhibit/How to make an exhibit from data fed directly from a Google
Spreadsheet [Online]. Massachusetts Institute of Technology.
Available from:
http://simile.mit.edu/wiki/Exhibit/How_to_make_an_exhibit_from_data_fed_directly_from_a_Google_Spr
eadsheet [Accessed 31 May 2008]

FH Technikum Wien Page 37

http://simile.mit.edu/exhibit
http://simile.mit.edu/exhibit
http://simile.mit.edu/exhibit
http://simile.mit.edu/mediawiki/index.php?title=Special:Prefixindex&from=exhibit&namespace=0
http://simile.mit.edu/mediawiki/index.php?title=Special:Prefixindex&from=exhibit&namespace=0
http://simile.mit.edu/mediawiki/index.php?title=Special:Prefixindex&from=exhibit&namespace=0
http://simile.mit.edu/
http://www.w3.org/2001/sw/
http://simile.mit.edu/
http://simile.mit.edu/
http://www.w3.org/
http://davidhuynh.net/media/papers/2007/www2007-exhibit.pdf
http://davidhuynh.net/media/thesis/thesis.php

Listings

● DALE, R., 26 March 2008, Exhibit/Lenses, Views and Facets [Online]. Massachusetts Institute of
Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/Lenses_Views_and_Facets [Accessed 31 May 2008].

● DALE, R., 26 March 2008, Exhibit/For Authors [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/For_Authors [Accessed 31 May 2008].

● CAMFIELD, J., 6 February 2008, Exhibit/2.0/Timeline View [Online]. Massachusetts Institute of
Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/2.0/Timeline_View [Accessed 31 May 2008].

● PFRED60, 13 March 2008, Exhibit/2.0/Tabular View [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/2.0/Tabular_View [Accessed 31 May 2008].

● LDD, 8 July 2007, Exhibit/FAQ [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/FAQ [Accessed 31 May 2008].

● KARGER, 6 July 2007, Exhibit/Dynamic URLs [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/Dynamic_URLs [Accessed 31 May 2008].

● ANDRISI, 4 February 2008, Exhibit/2.0/Coders [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/2.0/Coders [Accessed 31 May 2008].

● HUYNH, 17 June 2007, Exhibit/2.0/Coordinator [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/2.0/Coordinators [Accessed 31 May 2008].

● SABERHAGEN427, 23 January 2008, Exhibit/2.0/Formats [Online]. Massachusetts Institute of
Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/2.0/Formats [Accessed 31 May 2008].

● DASJO, 22 May 2008, Exhibit/Creating, Importing and Managing Data [Online]. Massachusetts Institute
of Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/Creating%2C_Importing%2C_and_Managing_Data
[Accessed 31 May 2008].

● Prototype Core Team, 2008, Prototype JavaScript framework: API.Prototype API Documentation
[Online]. Prototype Core Team.
Available from: http://www.prototypejs.org/api [Accessed 31 May 2008].

● The Dojo Foundation, 2008, dojo | Dojo Toolkit [Online]. The Dojo Foundation.
Available from: http://api.dojotoolkit.org/ [Accessed 31 May 2008].

● MICMATH, 2008, jsdoc-toolkit [Online]. Google Code.
Available from: http://code.google.com/p/jsdoc-toolkit/ [Accessed 31 May 2008].

● Sun Microsystems, Inc., http://java.sun.com/j2se/javadoc/ 2008, Javadoc Tool Home Page [Online]. Sun
Microsystems, Inc..
Available from: [Accessed 31 May 2008].

● Wikipedia, 31 March 2008, Austrian Service Abroad - Wikipedia, the free encyclopedia [Online].
Wikimedia Foundation, Inc.
Available from: http://en.wikipedia.org/wiki/Auslandsdienst [Accessed 31 May 2008].

● Österreichischer Auslandsdienst, 2008, Österreichischer Auslandsdienst – WebNeu [Online].
Österreichischer Auslandsdienst.
Available from: http://webneu.auslandsdienst.at/ [Accessed 31 May 2008].

● Plone Foundation, 2008, Plone CMS: Open Source Content Management [Online]. Plone Foundation.
Available from: http://plone.org/ [Accessed 31 May 2008].

● Zope Coorporation, 2008, Zope.org [Online]. Zope Coorporation.
Available from: http://www.zope.org/ [Accessed 31 May 2008].

● ASPELI, M., 14 January 2008, Zope 3 browser views [Online]. Plone Foundation.
Available from: http://plone.org/documentation/tutorial/customization-for-developers/zope-3-browser-
views [Accessed 31 May 2008].

● RICHTER, S., 17 November 2004, Zope 3 wiki ZCML [Online]. Zope Coorporation.
Available from: http://wiki.zope.org/zope3/ZCML [Accessed 31 May 2008].

● IPPOLITO, B., 2008, simplejson [Online]. Google Code.
Available from: http://code.google.com/p/simplejson/ [Accessed 31 May 2008].

● IPPOLITO, B., 4 May 2008, simplejson 1.9 [Online]. Google Code.
Available from: http://simplejson.googlecode.com/svn/tags/simplejson-1.9.1/docs/index.html [Accessed
31 May 2008].

FH Technikum Wien Page 38

http://simplejson.googlecode.com/svn/tags/simplejson-1.9.1/docs/index.html
http://code.google.com/p/simplejson/
http://wiki.zope.org/zope3/ZCML
http://plone.org/documentation/tutorial/customization-for-developers/zope-3-browser-views
http://plone.org/documentation/tutorial/customization-for-developers/zope-3-browser-views
http://www.zope.org/
http://plone.org/
http://webneu.auslandsdienst.at/
http://en.wikipedia.org/wiki/Auslandsdienst
http://java.sun.com/j2se/javadoc/
http://code.google.com/p/jsdoc-toolkit/
http://api.dojotoolkit.org/
http://www.prototypejs.org/api
http://simile.mit.edu/wiki/Exhibit/Creating,_Importing,_and_Managing_Data
http://simile.mit.edu/wiki/Exhibit/2.0/Formats
http://simile.mit.edu/wiki/Exhibit/2.0/Coordinators
http://simile.mit.edu/wiki/Exhibit/2.0/Coders
http://simile.mit.edu/wiki/Exhibit/Dynamic_URLs
http://simile.mit.edu/wiki/Exhibit/FAQ
http://simile.mit.edu/wiki/Exhibit/2.0/Tabular_View
http://simile.mit.edu/wiki/Exhibit/2.0/Timeline_View
http://simile.mit.edu/wiki/Exhibit/For_Authors
http://simile.mit.edu/wiki/Exhibit/Lenses_Views_and_Facets

Listings

● HUYNH, D., 11 April 2007, Exhibit/Template/JSON Data File [Online]. Massachusetts Institute of
Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/Template/JSON_Data_File [Accessed 31 May 2008].

● ROSSMAJER, B., 28 October 2007, Exhibit with Included Data [Online]. Massachusetts Institute of
Technology.
Available from: http://simile.mit.edu/mail/ReadMsg?listId=10&msgId=22059 [Accessed 31 May 2008].

● SIMON, 9 June 2008, METAL [Online]. Zope Coorporation.
Available from: http://wiki.zope.org/ZPT/METAL [Accessed 31 May 2008].

● DE VITIS, M., 16 March 2008, Macros and Slots [Online]. Plone Foundation.
Available from: http://plone.org/documentation/tutorial/zpt/macros-and-slots [Accessed 31 May 2008].

● EVAN, 8 March 2008, TALES [Online]. Zope Coorporation.
Available from: http://wiki.zope.org/ZPT/TALES [Accessed 31 May 2008].

● Smart Information Systems, 2008, OpenEvents [Online]. Smart Information Systems.
Available from: http://openevents.at [Accessed 31 May 2008].

● HOLLERER, S., KLAUSZ, M. DABERNIG, J., 2008, OpenEvents – Technische Spezifikation
(Programmlogik und User Interface) [Online]. Smart Information Systems.
Available from: http://openevents.at/docs/OpenEvents_Spezifikation.pdf [Accessed 31 May 2008].

● PEREZ, P. L., 2008, jsonmarshaller [Online]. Google Code.
Available from: http://code.google.com/p/jsonmarshaller [Accessed 31 May 2008].

● PEREZ, P. L., 18 March 2008, Introduction - jsonmarshaller [Online]. Google Code.
Available from: http://code.google.com/p/jsonmarshaller/wiki/Introduction [A ccessed 31 May 2008].

● HUYNH, D., 17 June 2007, Exhibit/2.0/Coordinators [Online]. Massachusetts Institute of Technology.
Available from: http://simile.mit.edu/wiki/Exhibit/2.0/Coordinators [A ccessed 31 May 2008].

● HUYNH, D. 18 February 2008, My departure + the future of Timeline and Exhibit [Online]. Massachusetts
Institute of Technology.
Available from: http://simile.mit.edu/mail/ReadMsg?listName=General&msgId=23992 [A ccessed 31 May
2008].

● HUYNH, D. 28 May 2008, Re: Pivot View Totals? [Online]. Google Groups.
Available from: http://groups.google.com/group/simile-widgets/msg/14131135d5419d9e [A ccessed 31
May 2008].

● HUYNH, D. 7 Feb 2007, scaling up Exhibit – an early experiment. [Online]. Massachusetts Institute of
Technology.
Available from: http://www.nabble.com/scaling-up-Exhibit---an-early-experiment-p15339573.html
[Accessed 31 May 2008]

● HUYNH, D. 25 May 2008, The Exhibition – merging all exhibits. [Online]. Massachusetts Institute of
Technology.
Available from: http://groups.google.com/group/simile-widgets/msg/b379cdeed32269f9 [A ccessed 31
May 2008].

FH Technikum Wien Page 39

http://groups.google.com/group/simile-widgets/msg/b379cdeed32269f9
http://www.nabble.com/scaling-up-Exhibit---an-early-experiment-p15339573.html
http://groups.google.com/group/simile-widgets/msg/14131135d5419d9e
http://simile.mit.edu/mail/ReadMsg?listName=General&msgId=23992
http://simile.mit.edu/wiki/Exhibit/2.0/Coordinators
http://code.google.com/p/jsonmarshaller/wiki/Introduction
http://code.google.com/p/jsonmarshaller
http://openevents.at/docs/OpenEvents_Spezifikation.pdf
http://openevents.at/
http://wiki.zope.org/ZPT/TALES
http://plone.org/documentation/tutorial/zpt/macros-and-slots
http://wiki.zope.org/ZPT/METAL
http://simile.mit.edu/mail/ReadMsg?listId=10&msgId=22059
http://simile.mit.edu/wiki/Exhibit/Template/JSON_Data_File

	Abstract & Kurzfassung
	Statutory Declaration
	 1 Problem & Objectives
	 1.1 Requirements
	 1.2 Target Groups
	 1.3 Approach
	 1.4 Chapter Overview

	 2 Introduction to Exhibit
	 2.1 Semantic Web
	 2.2 SIMILE Project
	 2.3 Exhibit

	 3 Basics of Exhibit
	 3.1 Intentions and Basic Concepts of Exhibit
	 3.2 History of Exhibit
	 3.3 Architecture

	 4 Usage of Exhibit
	 4.1 Starting with a minimal Setup
	 4.1.1 Creating the Data
	 4.1.2 Creating the Presentation
	 4.1.3 Examining the first Result

	 4.2 HTML Configuration Options
	 4.2.1 Include Exhibit API Extensions
	 4.2.2 Add & Customize Views
	 4.2.3 Add & Customize Facets
	 4.2.4 Add & Customize Lenses
	 4.2.5 Use Coders, Coordinators, Expressions and Formats

	 4.3 Data Options

	 5 Technical Documentation of Exhibit
	 5.1 Sources of Information
	 5.2 API Documentation
	 5.3 “Exhibit Code Documentation” exhibit
	 5.4 “Exhibit SVN History” exhibit

	 6 Real-World Use Cases based on Exhibit
	 6.1 Auslandsdienst WebNeu
	 6.1.1 Provide data using View Classes
	 6.1.2 Integrate Exhibit using the InlineImporter
	 6.1.3 Generate HTML Code using Templates

	 6.2 OpenEvents

	 7 Conclusion & Discussion
	 7.1 Community
	 7.2 Documentation
	 7.3 Performance

	 8 Listings
	 8.1 List of Illustrations
	 8.2 List of References

